

S-5813A/5814Aシリーズ

www.ablic.com

CMOS 温度センサ IC

© ABLIC Inc., 2006-2015 Rev.4.1_02

S-5813A/5814Aシリーズは、温度変化に対してリニアな出力電圧が得られる高精度の温度センサICです。 チップ内に温度センサ、定電流回路、オペアンプが集積されています。

動作周囲温度は-40°C~+100°Cで、従来のサーミスタなどの温度センサと比較してリニアリティが非常に優れており、 温度制御に関する広範囲な応用が可能です。

■ 特長

温度精度が高いS-5813Aシリーズ: ±5.0°C (-30°C~+100°C)

S-5814Aシリーズ: ±2.5°C (-30°C~+100°C)

● 温度変化に対して、リニアな出力電圧が得られる

-11.04 mV/°C Typ.

Ta = -30° C : 2.582 V Typ. Ta = $+30^{\circ}$ C : 1.940 V Typ. Ta = $+100^{\circ}$ C : 1.145 V Typ. +0.5% Typ. $(-20^{\circ}$ C $\sim +80^{\circ}$

リニアリティが優れている ±0.5 % Typ. (-20°C~+80°C)
広い電源電圧範囲で動作可能 V_{DD} = 2.4 V~10.0 V (+25°C)

消費電流が低い4.0 μA Typ. (+25°C)

• オペアンプ内蔵

• V_{SS}を基準とした出力電圧

• 鉛フリー(Sn 100%)、ハロゲンフリー

■ 用途

- 携帯電話、無線機などの高周波回路特性の補正
- 水晶振動子の発振周波数の補正
- LCD のコントラスト補正
- アンプゲインの補正
- オートフォーカス回路の補正
- バッテリマネジメントにおける温度検知
- 充電池、ハロゲンランプなどの過熱防止

■ パッケージ

• SNT-4A

■ ブロック図

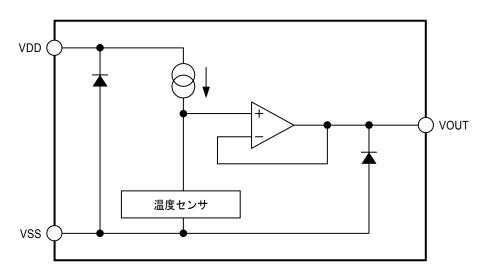
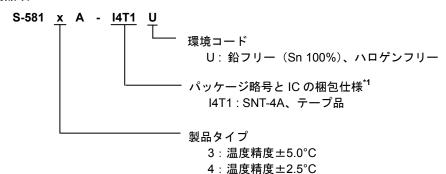



図1

■ 品目コードの構成

S-5813A/5814A シリーズは、製品タイプを用途により選択指定することができます。製品名における文字列が示す 内容は「1. 製品名」を、パッケージ図面は「2. パッケージ」を、詳しい製品名は「3. 製品名リスト」を参照 してください。

1. 製品名

*1. テープ図面を参照してください。

2. パッケージ

パット ご々	図面コード			
パッケージ名	パッケージ図面	テープ図面	リール図面	ランド図面
SNT-4A	PF004-A-P-SD	PF004-A-C-SD	PF004-A-R-SD	PF004-A-L-SD

3. 製品名リスト

表1

製品名	温度精度		
S-5813A-I4T1U	±5.0°C		
S-5814A-I4T1U	±2.5°C		

■ ピン配置図

SNT-4A Top view

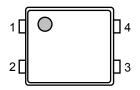


図2

表2

端子番号	端子記号	端子説明
1	VSS	GND 端子
2	VDD	電源端子
3	VOUT	出力電圧端子
4	NC ^{*1}	無接続

*1. NC は電気的にオープンを示します。 そのため、VDD 端子または VSS 端子に接続しても問題ありません。

■ 絶対最大定格

表3

(特記なき場合: Ta = +25°C)

		(MB & C)	3 - 1 - 1 - 2 - 7
項目	記号	絶対最大定格	単位
電源電圧	V_{DD}	V _{SS} -0.3~V _{SS} +12.0	V
出力電圧	V _{OUT}	V _{SS} -0.3~V _{DD} +0.3	V
許容損失	Ь	140(基板未実装時)	mW
計分損大	P _D	300 ^{*1}	mW
動作周囲温度	T _{opr}	-40~+100	°C
保存温度	T _{sta}	-40~+125	°C

*1. 基板実装時

[実装基板]

(1) 基板サイズ: 114.3 mm × 76.2 mm × t1.6 mm

(2) 名称 : JEDEC STANDARD51-7

注意 絶対最大定格とは、どのような条件下でも越えてはならない定格値です。万一この定格値を越えると、製品 の劣化などの物理的な損傷を与える可能性があります。

■ 電気的特性

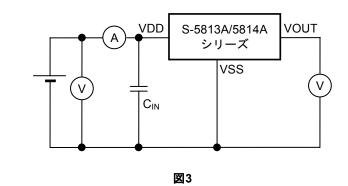
1. S-5813Aシリーズ

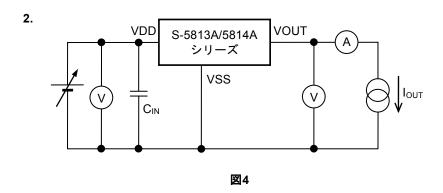
表4 (特記なき場合: Ta = +25°C、V_{DD} = 5.0 V、I_{OUT} = 0 A)

		71911010	-		1 DD 0.0	• • • • • • • • • • • • • • • • • • • •	
項目	記号	条件	Min.	Тур.	Max.	単位	測定 回路
		1	2.40	ı	10.00	V	1
電源電圧	V_{DD}	$Ta = -20^{\circ}C \sim +100^{\circ}C$	2.65	I	10.00	V	1
		$Ta = -30^{\circ}C \sim +100^{\circ}C$	2.90	I	10.00	V	1
		$Ta = -30^{\circ}C$	2.528	2.582	2.636	V	1
出力電圧	V_{OUT}	Ta = +30°C	1.886	1.940	1.994	V	1
		Ta = +100°C	1.091	1.145	1.199	V	1
温度感度	V_{SE}	$Ta = -30^{\circ}C \sim +100^{\circ}C$	-11.31	-11.04	-10.77	mV/°C	_
リニアリティ	ΔN_L	$Ta = -20^{\circ}C \sim +80^{\circ}C$	_	±0.5	_	%	_
動作周囲温度	T_{opr}	_	-40	_	100	°C	_
消費電流	I_{DD}	_	_	4.0	8.0	μΑ	1
入力安定度	ΔV_{OUT1}	$V_{DD} = 2.4 \text{ V} \sim 10.0 \text{ V}$	_		0.05	%/V	2
負荷安定度 ^{*1}	ΔV_{OUT2}	$I_{OUT} = 0 \mu A \sim 200 \mu A$	_	_	1.0	mV	2

^{*1.} 出力電圧端子には、電流を流し込まないでください。

2. S-5814Aシリーズ

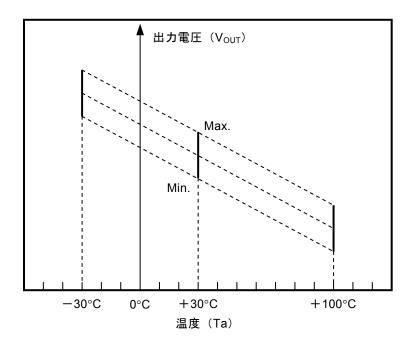

表5 (特記なき場合:Ta = +25°C、V_{DD} = 5.0 V、I_{OUT} = 0 A)


		******	у С <i>-</i> 20 Д .		O, 100 0	.0 V , 100	0717
項目	記号	条件	Min.	Тур.	Max.	単位	測定 回路
		_	2.40	_	10.00	V	1
電源電圧	V_{DD}	$Ta = -20^{\circ}C \sim +100^{\circ}C$	2.65	-	10.00	V	1
		$Ta = -30^{\circ}C \sim +100^{\circ}C$	2.90	1	10.00	V	1
		Ta = −30°C	2.555	2.582	2.609	V	1
出力電圧	V_{OUT}	Ta = +30°C	1.913	1.940	1.967	V	1
		Ta = +100°C	1.118	1.145	1.172	V	1
温度感度	V _{SE}	$Ta = -30^{\circ}C \sim +100^{\circ}C$	-11.31	-11.04	-10.77	mV/°C	_
リニアリティ	ΔN_L	$Ta = -20^{\circ}C \sim +80^{\circ}C$		±0.5		%	_
動作周囲温度	T _{opr}	_	-40		100	°C	_
消費電流	I _{DD}	_		4.0	8.0	μΑ	1
入力安定度	ΔV_{OUT1}	$V_{DD} = 2.4 \text{ V} \sim 10.0 \text{ V}$			0.05	%/V	2
負荷安定度 ^{*1}	ΔV_{OUT2}	I _{OUT} = 0 μA~200 μA	_	_	1.0	mV	2

^{*1.} 出力電圧端子には、電流を流し込まないでください。

■ 測定回路

1.



■ 用語の説明

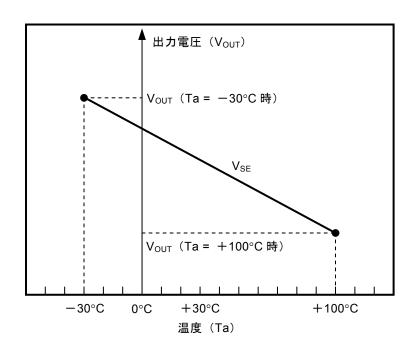
1. 出力電圧 (V_{OUT})

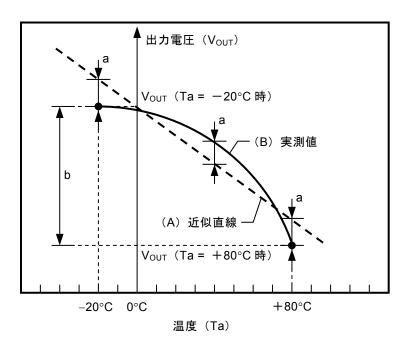
Ta = -30°C、Ta = +30°C、Ta = +100°C 時の端子電圧を示します。

2. 温度感度 (V_{SE})

Ta = -30°C、Ta = +100°C 時の出力電圧から計算した、出力電圧の温度係数を示します。 V_{SE} は以下の式を使って算出されます。

$$V_{SE} = \frac{\left[V_{OUT}^{*1} - V_{OUT}^{*2}\right]}{130^{*3}}$$




図6

- *1. Ta = +100°C の時の出力電圧値 [V]。
- *2. Ta = -30°C の時の出力電圧値 [V]。
- *3. Ta = +100°C と Ta = -30°C の温度差 [°C]。

3. リニアリティ (ΔN_L)

出力電圧の特性曲線と、その近似直線との偏差を示します。 ΔN_L は以下の式を使って算出されます。

$$\Delta N_L = \frac{a^{*1}}{b^{*2}} \times 100$$

- *1. -20°C~+80°C の温度範囲内での、出力電圧の実測値(B)と近似直線(A)との最大偏差 (近似直線は、a が最小となる直線とする)。
- *2. -20°C と+80°C 時の出力電圧の実測値の差。

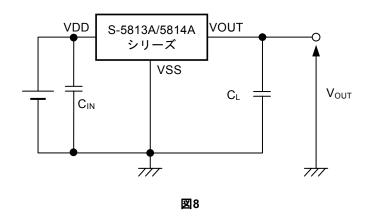
図7

4. 入力安定度 (Δ**V**_{OUT1})

出力電圧の入力電圧依存性を表しています。つまり、出力電流を一定にして入力電圧を変化させ、出力電圧がどれだけ変化するかを表したものです。

5. 負荷安定度 (ΔV_{OUT2})

出力電圧の出力電流依存性を表しています。つまり、入力電圧を一定にして出力電流を変化させ、出力電圧がどれだけ変化するかを表したものです。

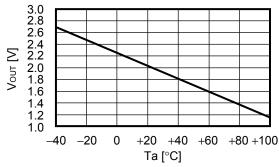

■ 注意事項

- VDD 端子、VSS 端子及び VOUT 端子の配線は、インピーダンスが低くなるように十分注意して、パターン配線 してください。
- 本 IC は VOUT 端子の負荷容量が大きい場合、VOUT 端子電圧が発振するおそれがあります。したがって、VOUT -VSS 端子間には外付けコンデンサを使用しないことを推奨します。なお、外付けコンデンサを使用される場合には、VOUT 端子の近くに付加してください。

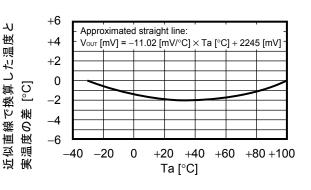
VOUT 端子に A/D コンバータなどを接続する場合、負荷容量には A/D コンバータの入力端子容量や、配線間の寄生容量成分も含まれます。

発振を防止するため、以下の出力負荷条件での使用を推奨します。

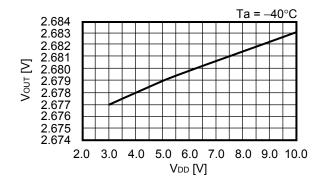
VOUT 端子の負荷容量 (C_L): 2.2 μF 以下

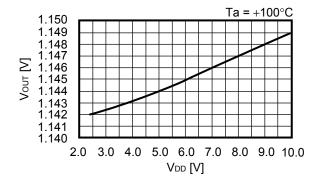


注意 上記接続図及び定数は動作を保証するものではありません。実際のアプリケーションで十分な評価の 上、定数を設定してください。

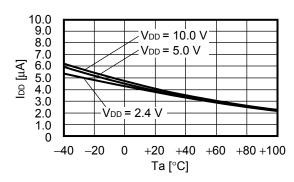

- 出力端子にプルアップ抵抗を接続しないでください。
- IC 内での損失がパッケージの許容損失を越えないように、入出力電圧、負荷電圧の使用条件にご注意ください。
- 本 IC は静電気に対する保護回路が内蔵されていますが、保護回路の性能を越える過大静電気が IC に印加されないようにしてください。
- 弊社 IC を使用して製品を作る場合には、その製品での当 IC の使い方や製品の仕様また、出荷先の国などによって当 IC を含めた製品が特許に抵触した場合、その責任は負いかねます。

諸特性データ(Typical データ)

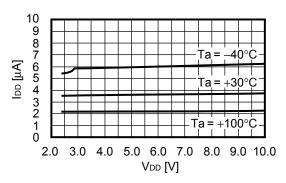

1. 出力電圧 (V_{out}) -温度 (Ta)

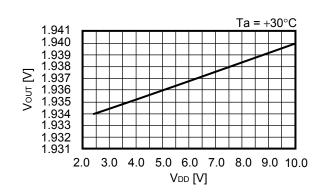


3. 各温度の誤差範囲

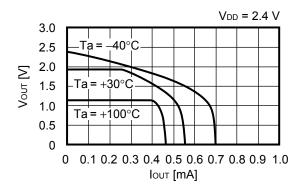


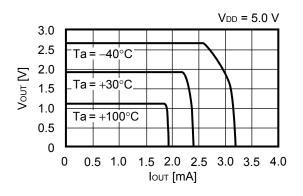
5. 出力電圧 (V_{OUT}) 一電源電圧 (V_{DD})

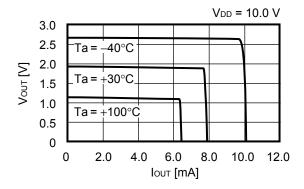




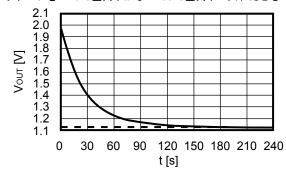
2. 消費電流(I_{DD})-温度(Ta)

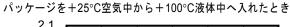


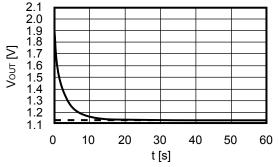

4. 消費電流 (I_{DD}) -電源電圧 (V_{DD})



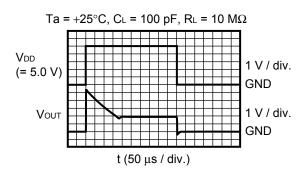
6. 出力電圧(Vout) -負荷電流(Iout)

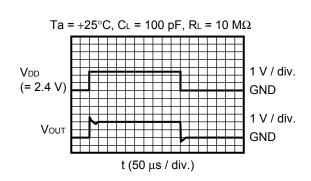


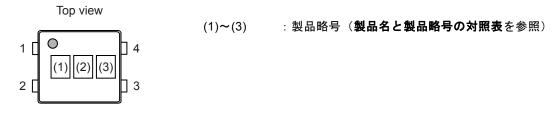


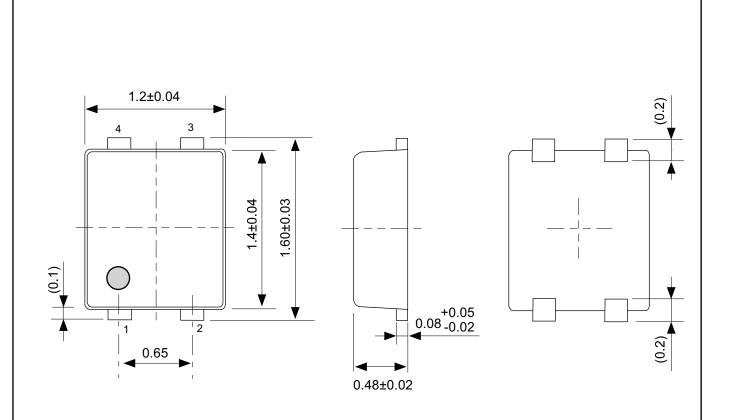


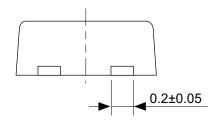
7. 熱応答性 出力電圧(Vout)一時間(t)


パッケージを+25°C空気中から+100°C空気中へ入れたとき

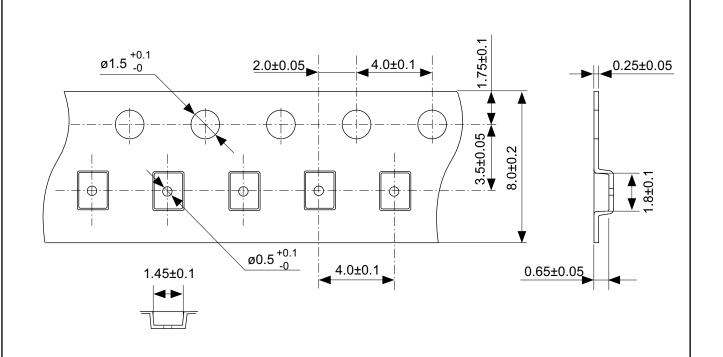


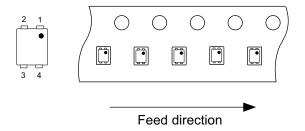

8. スタートアップ応答


■ マーキング仕様

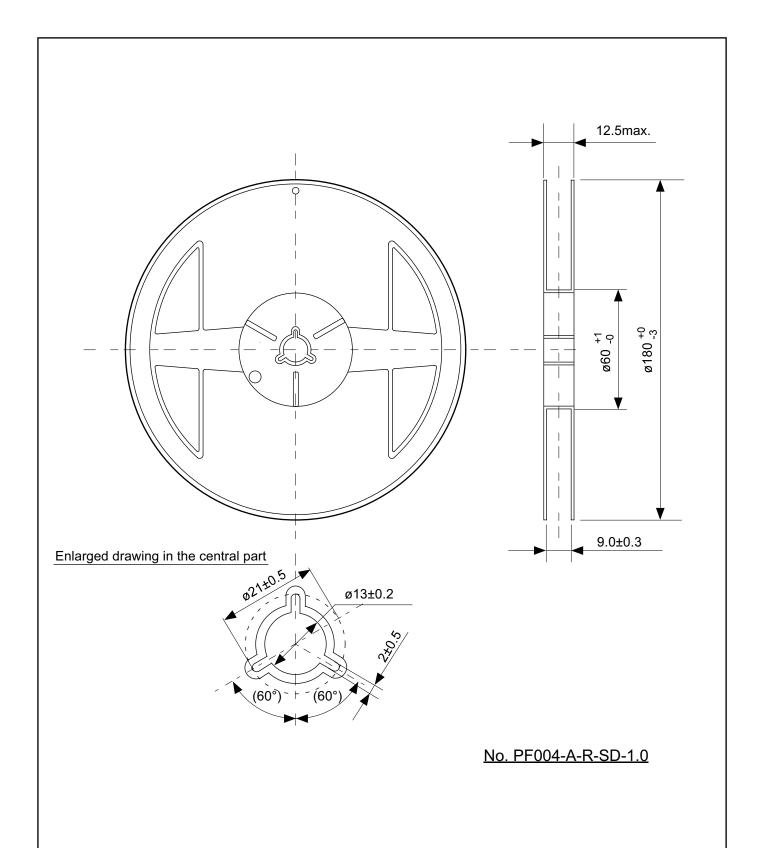

1. SNT-4A

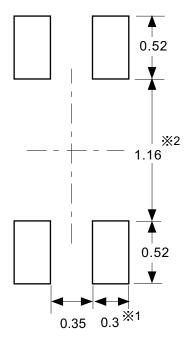
製品名と製品略号の対照表


製品名	製品略号			
表明石	(1)	(2)	(3)	
S-5813A-I4T1U	D	R	С	
S-5814A-I4T1U	D	R	D	



No. PF004-A-P-SD-6.0


TITLE	SNT-4A-A-PKG Dimensions	
No.	PF004-A-P-SD-6.0	
ANGLE	\$ = 3	
UNIT	mm	
ABLIC Inc.		



No. PF004-A-C-SD-2.0

TITLE	SNT-4A-A-Carrier Tape	
No.	PF004-A-C-SD-2.0	
ANGLE		
UNIT	mm	
ABLIC Inc.		

TITLE	SNT-4A-A-Reel		
No.	PF004-A-R-SD-1.0		
ANGLE		QTY.	5,000
UNIT	mm		
ABLIC Inc.			

- %1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。 %2. パッケージ中央にランドパターンを広げないでください (1.10 mm ~ 1.20 mm)。
- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
 - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm 以下にしてください。
 - 3. マスク開口サイズと開口位置はランドパターンと合わせてください。
 - 4. 詳細は "SNTパッケージ活用の手引き"を参照してください。
- ※1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
- ※2. Do not widen the land pattern to the center of the package (1.10 mm to 1.20 mm).
- Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
 - 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
 - 3. Match the mask aperture size and aperture position with the land pattern.
 - 4. Refer to "SNT Package User's Guide" for details.
- ※1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- ※2. 请勿向封装中间扩展焊盘模式 (1.10 mm ~ 1.20 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
 - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在 0.03 mm 以下。
 - 3. 钢网的开口尺寸和开口位置请与焊盘模式对齐。
 - 4. 详细内容请参阅 "SNT 封装的应用指南"。

No. PF004-A-L-SD-4.1

TITLE	SNT-4A-A -Land Recommendation	
No.	PF004-A-L-SD-4.1	
ANGLE		
UNIT	mm	
ABLIC Inc.		

免責事項 (取り扱い上の注意)

- 1. 本資料に記載のすべての情報 (製品データ、仕様、図、表、プログラム、アルゴリズム、応用回路例等) は本資料発行時点のものであり、予告なく変更することがあります。
- 2. 本資料に記載の回路例および使用方法は参考情報であり、量産設計を保証するものではありません。本資料に記載の 情報を使用したことによる、本資料に記載の製品 (以下、本製品といいます) に起因しない損害や第三者の知的財産 権等の権利に対する侵害に関し、弊社はその責任を負いません。
- 3. 本資料の記載に誤りがあり、それに起因する損害が生じた場合において、弊社はその責任を負いません。
- 4. 本資料に記載の範囲内の条件、特に絶対最大定格、動作電圧範囲、電気的特性等に注意して製品を使用してください。 本資料に記載の範囲外の条件での使用による故障や事故等に関する損害等について、弊社はその責任を負いません。
- 5. 本製品の使用にあたっては、用途および使用する地域、国に対応する法規制、および用途への適合性、安全性等を確認、試験してください。
- 6. 本製品を輸出する場合は、外国為替および外国貿易法、その他輸出関連法令を遵守し、関連する必要な手続きを行ってください。
- 7. 本製品を大量破壊兵器の開発や軍事利用の目的で使用および、提供 (輸出) することは固くお断りします。核兵器、生物兵器、化学兵器およびミサイルの開発、製造、使用もしくは貯蔵、またはその他の軍事用途を目的とする者へ提供 (輸出) した場合、弊社はその責任を負いません。
- 8. 本製品は、生命・身体に影響を与えるおそれのある機器または装置の部品および財産に損害を及ぼすおそれのある機器または装置の部品(医療機器、防災機器、防犯機器、燃焼制御機器、インフラ制御機器、車両機器、交通機器、車載機器、航空機器、宇宙機器、および原子力機器等)として設計されたものではありません。上記の機器および装置には使用しないでください。ただし、弊社が車載用等の用途を事前に明示している場合を除きます。上記機器または装置の部品として本製品を使用された場合または弊社が事前明示した用途以外に本製品を使用された場合、これらにより発生した損害等について、弊社はその責任を負いません。
- 9. 半導体製品はある確率で故障、誤動作する場合があります。本製品の故障や誤動作が生じた場合でも人身事故、火災、 社会的損害等発生しないように、お客様の責任において冗長設計、延焼対策、誤動作防止等の安全設計をしてくださ い。また、システム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 10. 本製品は、耐放射線設計しておりません。お客様の用途に応じて、お客様の製品設計において放射線対策を行ってください。
- 11. 本製品は、通常使用における健康への影響はありませんが、化学物質、重金属を含有しているため、口中には入れないようにしてください。また、ウエハ、チップの破断面は鋭利な場合がありますので、素手で接触の際は怪我等に注意してください。
- 12. 本製品を廃棄する場合には、使用する地域、国に対応する法令を遵守し、適切に処理してください。
- 13. 本資料は、弊社の著作権、ノウハウに係わる内容も含まれております。本資料中の記載内容について、弊社または第三者の知的財産権、その他の権利の実施、使用を許諾または保証するものではありません。本資料の一部または全部を弊社の許可なく転載、複製し、第三者に開示することは固くお断りします。
- 14. 本資料の内容の詳細その他ご不明な点については、販売窓口までお問い合わせください。
- 15. この免責事項は、日本語を正本として示します。英語や中国語で翻訳したものがあっても、日本語の正本が優越します。

2.4-2019.07