

S-25C160A Hシリーズ

車載用 105°C動作 SPIシリアルE²PROM

www.ablic.com

Rev.3.0_01_H © ABLIC Inc., 2010-2017

S-25C160A Hシリーズは、車載用、高温動作のSPIシリアルE²PROMです。容量は16 Kビットで、構成は2048語×8ビット です。

ページライト、シーケンシャルリードが可能です。

注意 自動車制御ユニット、医療機器用途でご使用をお考えの際は、必ず弊社窓口までご相談ください。

■ 特長

· 動作電圧範囲 : 読み出し 2.5 V~5.5 V

書き込み 2.5 V~5.5 V

• 動作周波数 : 5.0 MHz (2.5 V~5.5 V)

・書き込み時間 : 5.0 ms max.

·SPIモード(0,0)&(1,1)対応

・ページライト機能: 32バイト/ページ

・シーケンシャルリード機能

・ステータスレジスタによるメモリ書き込み状態監視

ライトプロテクト機能 : ソフトウェア、ハードウェア

プロテクト領域 : 25%, 50%, 100% ・クロックパルスモニタによる誤動作防止機能

低電源電圧時書き込み禁止機能

・CMOSシュミット入力(CS, SCK, SI, WP, HOLD)

: 10⁶回/語^{*1}(Ta = +25°C) ・書き換え回数

 3×10^5 回/語^{*1} (Ta = +85°C) 2 × 10⁵回/語^{*1} (Ta = +105°C)

データ保持 : 100年(Ta = +25°C)

> 30年(Ta = +85°C) 25年(Ta = +105°C)

: 16 Kビット ・メモリ容量

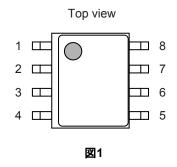
・初期出荷時データ : FFh, SRWD = 0, BP1 = 0, BP0 = 0

・動作温度範囲 : $Ta = -40^{\circ}C \sim +105^{\circ}C$

・鉛フリー (Sn 100%)、ハロゲンフリー

• AEC-Q100 対応*2

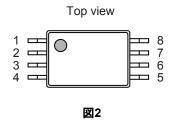
***1.** アドレスごと (語:8ビット)


*2. 詳細は、弊社営業部までお問い合わせください。

■ パッケージ

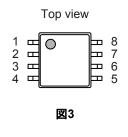
- 8-Pin SOP (JEDEC)
- 8-Pin TSSOP
- TMSOP-8

■ ピン配置図


1. 8-Pin SOP (JEDEC)

S-25C160A0H-J8T2U3

		表1
端子番号	端子記号	端子内容
1	CS*1	チップセレクト入力
2	SO	シリアルデータ出力
3	WP *1	ライトプロテクト入力
4	GND	グランド
5	SI ^{*1}	シリアルデータ入力
6	SCK ^{*1}	シリアルクロック入力
7	HOLD *1	ホールド入力
8	VCC	電源


2. 8-Pin TSSOP

S-25C160A0H-T8T2U3

		表2
端子番号	端子記号	端子内容
1	CS*1	チップセレクト入力
2	SO	シリアルデータ出力
3	WP *1	ライトプロテクト入力
4	GND	グランド
5	SI ^{*1}	シリアルデータ入力
6	SCK*1	シリアルクロック入力
7	HOLD *1	ホールド入力
8	VCC	電源

3. TMSOP-8

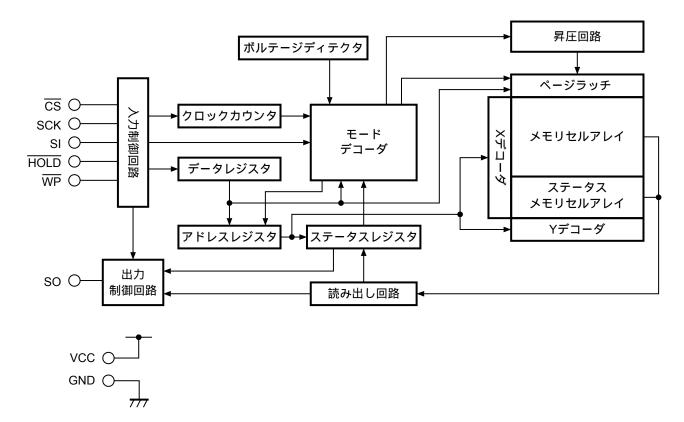

S-25C160A0H-K8T2U3

		表3
端子番号	端子記号	端子内容
1	CS ^{*1}	チップセレクト入力
2	SO	シリアルデータ出力
3	WP *1	ライトプロテクト入力
4	GND	グランド
5	SI ^{*1}	シリアルデータ入力
6	SCK*1	シリアルクロック入力
7	HOLD *1	ホールド入力
8	VCC	電源

*1. High-Zが入力されないようにしてください。

備考 形状については「外形寸法図」を参照してください。

■ ブロック図

■ AEC-Q100対応

本ICはAEC-Q100の動作温度グレード2に対応しています。 AEC-Q100の信頼性試験の詳細については、弊社営業部までお問い合わせください。

■ 絶対最大定格

表4

項目	記号	定格	単位
電源電圧	V _{CC}	-0.3~+6.5	V
入力電圧	V _{IN}	-0.3~+6.5	V
出力電圧	V _{OUT}	-0.3∼V _{CC} +0.3	V
動作周囲温度	T _{opr}	-40~+105	°C
保存温度	T _{stq}	-65~+150	°C

注意 絶対最大定格とは、どのような条件下でも越えてはならない定格値です。万一この定格値 を越えると、製品の劣化などの物理的な損傷を与える可能性があります。

■ 推奨動作条件

表5

		24.0				
百日	記号	条件	Ta =-40°C	単位		
項目記号		朱什	Min.	Max.	中世	
電源電圧	\/	読み出し	2.5	5.5	V	
电心电压	V _{CC}	書き込み	2.5	5.5	V	
高レベル入力電圧	V_{IH}	V _{CC} = 2.5 V∼5.5 V	$0.7 \times V_{CC}$	$V_{CC} + 1.0$	V	
低レベル入力電圧	V_{IL}	V _{CC} = 2.5 V∼5.5 V	-0.3	$0.3 \times V_{CC}$	V	

■ 端子容量

表6

 $(Ta = +25^{\circ}C, f = 1.0 MHz, V_{CC} = 5 V)$

項目	記号	条件	Min.	Max.	単位
入力容量	C _{IN}	$V_{IN} = 0 \text{ V } (\overline{CS}, SCK, SI, \overline{WP}, \overline{HOLD})$	_	8	pF
出力容量	C _{OUT}	$V_{OUT} = 0 V (SO)$	_	10	pF

■ 書き換え回数

表7

I	項目	記号	動作周囲温度	Min.	Max.	単位
I			+25°C	10 ⁶	_	回/語*1
	書き換え回数 N _W	N_W	-40°C∼+85°C	3×10^{5}	_	回/語*1
			-40°C~+105°C	2×10^{5}	_	回/語*1

^{*1.} アドレスごと(語:8ビット)

■ データ保持

表8

項目	記号	動作周囲温度	Min.	Max.	単位
		+25°C	100	_	年
データ保持	_	-40°C~+85°C	30	_	年
		-40°C∼+105°C	25	_	年

■ DC電気的特性

表9

			$Ta = -40^{\circ}C \sim +105^{\circ}C$					
項目記号	条件	V _{CC} = 2.5 V∼4.5 V		V _{CC} = 4.5 V∼5.5 V		単位		
- 切口	配力	大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大	$f_{SCK} = 5$	5.0 MHz	$f_{SCK} = 5$	5.0 MHz	- 平位	
				Min.	Max.	Min.	Max.	
読み出し時消費電流	I _{CC1}	SO端子無負荷	1	2.0	_	2.5	mA	

表10

項目記号		Ta =−40°C~+105°C					
	하므	3号 条件	V _{CC} = 2.5	V~4.5 V	$V_{CC} = 4.5$	V~5.5 V	単位
- 現口	記号 米什		$f_{SCK} = 5.0 \text{ MHz}$		5.0 MHz	$f_{SCK} = 5.0 \text{ MHz}$	
			Min.	Max.	Min.	Max.	
書き込み時消費電流	I_{CC2}	SO端子無負荷	_	2.5	_	2.5	mA

表11

			衣!!				
				Ta =-40°C	C~+105°C		
項目	記号	条件	V _{CC} = 2.5	V~4.5 V	$V_{CC} = 4.5$	V~5.5 V	単位
			Min.	Max.	Min.	Max.	
待機時消費電流	I _{SB}	CS = V _{CC} , SO = オープン, 他の入力端子は V _{CC} または GND	_	7.0	_	9.0	μА
入力リーク電流	I _{LI}	V _{IN} = GND~V _{CC}	_	1.2	_	1.2	μΑ
出カリーク電流	I_{LO}	$V_{OUT} = GND \sim V_{CC}$	_	1.2	_	1.2	μА
低レベル出力電圧	V_{OL1}	I _{OL} = 2.0 mA	_	0.4	_	0.4	V
成レベル山刀电圧	V_{OL2}	I _{OL} = 1.5 mA	_	0.4	_	0.4	V
高レベル出力電圧	V_{OH1}	$I_{OH} = -2.0 \text{ mA}$	$0.8 \times V_{CC}$	1	$0.8 \times V_{CC}$	1	V
同レベル山川电圧	V_{OH2}	$I_{OH} = -0.4 \text{ mA}$	$0.8 \times V_{CC}$		$0.8 \times V_{CC}$		V

■ AC電気的特性

表12 測定条件

入力パルス電圧	0.2×V _{CC} ~0.8×V _{CC}
出力判定電圧	0.5×V _{CC}
出力負荷	100 pF

表13

	报 13		Ta =-40°C	C~+105°C	;	
項目	記号	V _{CC} = 2.5	V~4.5 V	V _{CC} = 4.5	V~5.5 V	単位
		Min.	Max.	Min.	Max.	
SCKクロック周波数	f _{SCK}	_	5.0	_	5.0	MHz
CS 立ち下がり時 CS セットアップ時間	t _{CSS.CL}	90	_	90	_	ns
○S 立ち上がり時 ○S セットアップ時間	t _{CSS.CH}	90	_	90	_	ns
 CS ディセレクト時間	t _{CDS}	90	_	90	_	ns
CS 立ち下がり時 CS ホールド時間	t _{CSH.CL}	90	_	90	_	ns
CS 立ち上がり時 CS ホールド時間	t _{CSH.CH}	90	_	90	_	ns
SCKクロック"H"時間 ^{*1}	t _{HIGH}	90	_	90	_	ns
SCKクロック"L"時間 ^{*1}	t_{LOW}	90	_	90	_	ns
SCKクロック立ち上がり時間 ^{*2}	t _{RSK}	_	1	I	1	μS
SCKクロック立ち下がり時間 ^{*2}	t _{FSK}	_	1	-	1	μS
SIデータ入力セットアップ時間	t _{DS}	20	_	20	_	ns
SIデータ入力ホールド時間	t _{DH}	30	_	30	_	ns
HOLD 立ち上がり時 SCK "L" ホールド時間	t _{SKH.HH}	70	_	70	_	ns
HOLD 立ち下がり時 SCK "L" ホールド時間	t _{SKH.HL}	40	_	40	_	ns
HOLD 立ち下がり時 SCK "L" セットアップ時間	t _{SKS.HL}	0	_	0	_	ns
HOLD 立ち上がり時 SCK "L" セットアップ時間	t _{sks.нн}	0	_	0	_	ns
SO出力ディスエーブル時間 ^{*2}	t _{OZ}	_	100	ı	100	ns
SO出力遅延時間	t_{OD}	_	70	_	70	ns
SO出力ホールド時間	t _{OH}	0	_	0	_	ns
SO出力立ち上がり時間 ^{*2}	t_{RO}	_	40	ı	40	ns
SO出力立ち下がり時間 ^{*2}	t _{FO}	-	40	1	40	ns
——— HOLD 立ち下がり時 SO出力ディスエーブル時間 ^{*2}	t _{OZ.HL}	_	100	I	100	ns
—OLD 立ち上がり時 SO出力遅延時間 ^{*2}	t _{OD.HH}	_	50	_	50	ns
WP セットアップ時間	t _{WS1}	0	_	0	_	ns
WP ホールド時間	t _{WH1}	0	_	0	_	ns
WP 解除セットアップ時間	t _{WS2}	0	_	0	_	ns
WP解除ホールド時間	t _{WH2}	30	一	30		ns

^{*1.} SCK クロック(周波数 f_{SCK})のクロック周期は $1/f_{SCK}$ μs です。このクロック周期は、いくつかの AC 特性の組み合わせにより決定されます。そのため、SCK クロックサイクル時間を最小にする場合でも、クロック周期($1/f_{SCK}$) = t_{LOW} (Min.)+ t_{HIGH} (Min.)とすることはできませんのでご注意ください。

^{*2.} このパラメータは全数測定されたものではなく、サンプル値です。

表14項目Ta = -40°C ~ +105°C
V_{CC} = 2.5 V ~ 5.5 V
Min.単位
Max.書き込み時間t_{PR}-5.0ms

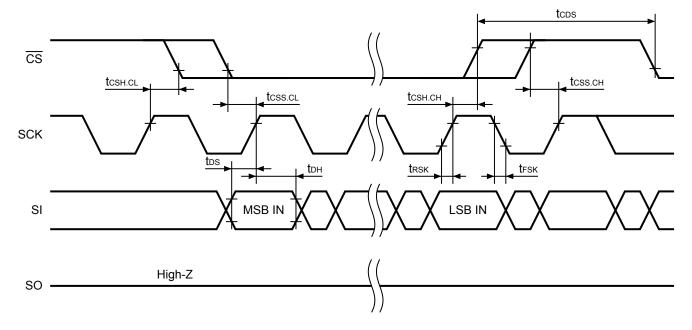


図5 シリアル入力タイミング

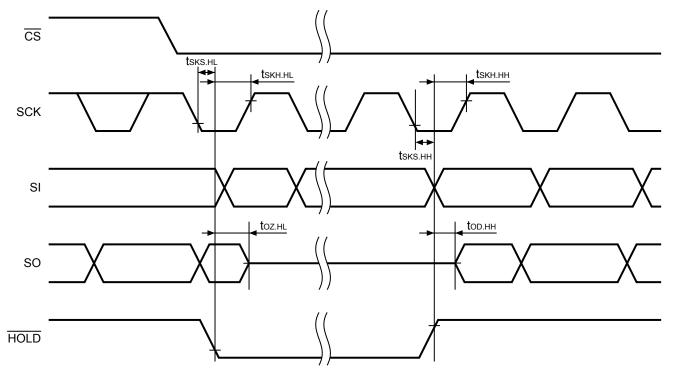


図6 ホールドタイミング エイブリック株式会社

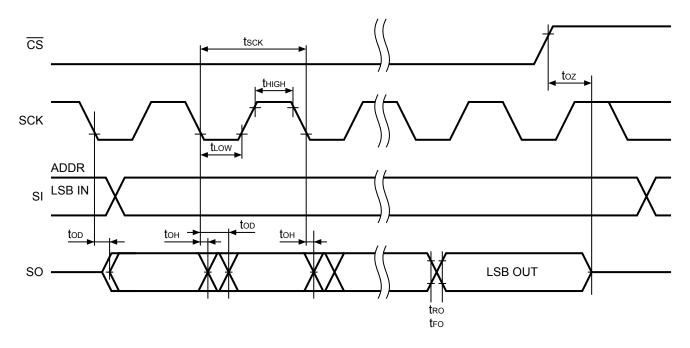


図7 シリアル出力タイミング

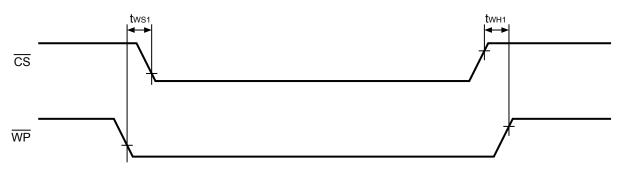
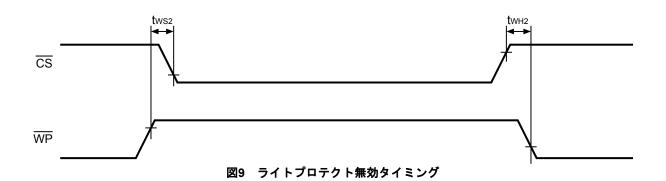



図8 ライトプロテクト有効タイミング

■ 各端子の機能説明

1. CS (チップセレクト入力) 端子

チップを選択状態に設定するための入力端子です。この入力が"H"レベルのとき、デバイスは非選択状態で出力はHigh-Zとなります。内部にて書き込み状態でない限りデバイスはスタンバイ状態です。

チップセレクトを "L" レベルにするとデバイスはアクティブ状態になります。電源立ち上げ後、チップセレクトを立ち下げたときに何らかの命令コードを入力する必要があります。

2. SI(シリアルデータ入力)端子

シリアルデータの入力端子です。命令コード・アドレス・書き込みデータを取り込みます。シリアルクロックの 立ち上がりにてデータをラッチします。

3. SO(シリアルデータ出力)端子

シリアルデータの出力端子です。データ出力は、シリアルクロックの立ち下がりにて変化します。

4. SCK(シリアルクロック入力)端子

シリアルデータのタイミングを設定するためのクロック入力端子です。命令コード・アドレスおよび書き込み データの入力は、クロックの立ち上がりで取り込まれます。データ出力は、クロックの立ち下がり時に出力しま す。

5. WP (ライトプロテクト入力) 端子

ライトプロテクトは、書き込み命令に対するプロテクトエリアサイズ(ステータスレジスタのBP1, BP0)を保護することを目的としています。 $\overline{\text{WP}}$ 端子は "H" もしくは "L"に固定し、フローティング状態にならないようにしてください。

詳細は、「■ プロテクト動作」を参照してください。

6. HOLD (ホールド入力) 端子

ホールドは、デバイスを非選択状態にせずにシリアルコミュニケーションを休止するときに使用します。 ホールド状態では、シリアル出力はHigh-Z状態となり、シリアル入力およびシリアルクロックは Don't Care となります。ホールド動作中は、 \overline{CS} (チップセレクト入力)端子を "L" レベルにし、デバイスをアクティブ状態にしなければなりません。

詳細は、「**■ ホールド動作**」を参照してください。

■ 初期出荷時データ

初期出荷時のデータは、すべてのアドレスが "FFh" になっています。 また、ステータスレジスタの不揮発性メモリの初期出荷時データは以下のとおりです。

- SRWD = 0
- BP1 = 0
- BP0 = 0

■ 命令セット

S-25C160Aの命令一覧を**表15**に示します。チップセレクト($\overline{\text{CS}}$)が "H" から "L" に変化すると命令入力は可能になり、命令はMSBファーストで入力します。命令コードは下記の表に示すように1バイトの構成です。

もし、無効な命令コードを受信したときは、デバイスは非選択状態になります。

表15 命令セット

		命令コード	アド	レス	データ
命令	内容	SCK 入力クロック	SCK 入力クロック	SCK 入力クロック	SCK 入力クロック
		1~8	9 ~ 16	17~24	25~32
WREN	書き込み許可	0000 0110	_	_	_
WRDI	書き込み禁止	0000 0100	_	-	_
RDSR	ステータスレジスタ読み出し	0000 0101	b7~b0 出力 ^{*1}	-	_
WRSR	ステータスレジスタ書き込み	0000 0001	b7~b0 入力	-	_
READ	メモリデータ読み出し	0000 0011	A15~A8 ^{*2}	A7~A0	D7~D0 出力*3
WRITE	メモリデータ書き込み	0000 0010	A15~A8 ^{*2}	A7~A0	D7~D0 入力

^{*1.} 連続してデータを読み出すことが可能です。

^{*2.} 上位アドレス A15~A11 = Don't care になります。

^{*3.} 指定されたアドレスのデータが出力されると、それに続いて次のアドレスのデータが出力されます。

■ 動作説明

1. ステータスレジスタ

ステータスレジスタの構成を、下記に示します。ステータスレジスタは、専用の命令により読み出し・書き込み可能です。

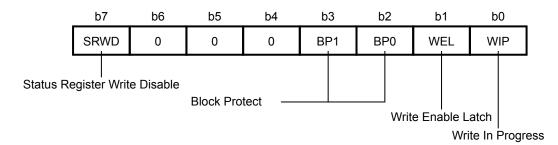


図10 ステータスレジスタ構成図

ステータスレジスタのステータスおよびコントロールビットは下記の通りです。

1. 1 SRWD (b7) : Status register write disable

SRWDビットは、ライトプロテクト (\overline{WP}) 信号と関連して動作します。SRWDビットとライトプロテクト (\overline{WP}) 信号 (SRWD = "1", \overline{WP} = "L") の組み合わせにより、このデバイスはハードウェアプロテクト状態になります。このとき、ステータスレジスタ内の不揮発性メモリで構成されるビット (SRWD, BP1, BP0) はリードオンリーとなり、WRSR命令は実行されません。

1. 2 BP1, BP0 (b3, b2) : Block protect

BP1, BP0ビットは不揮発性メモリで構成されています。これは、WRITE命令に対するソフトウェアプロテクトの領域サイズを定義するものです。これらのビットは、WRSR命令にて書き換え可能です。BP1, BP0ビットの一つまたは両方を"1"にセットしたときWRITE命令に対して関連するメモリ領域がプロテクトされます。BP1, BP0ビットは、ハードウェアプロテクトモードでなければ書き換えが可能です。

Block Protect の詳細は、「■ プロテクト動作」を参照してください。

1.3 WEL (b1) : Write enable latch

WEL ビットは、内部の Write Enable Latch の状態を示します。WEL ビットは WREN 命令のみでセットできます。"1"であれば内部の Write Enable Latch がセットされている状態です。"0"であれば内部の Write Enable Latch がリセット状態で、デバイスは WRITE または WRSR の命令を受け取ることができません。リセットは、下記に示す動作の実行後に行われます。

- 電源電圧の低下時
- 電源投入時
- WRDI 実行後
- · WRSR 命令での書き込み動作完了後
- · WRITE 命令での書き込み動作完了後

1.4 WIP (b0) : Write in progress

WIPビットは、リードオンリーで内部メモリがWRITE命令またはWRSR命令での書き込み動作中か否かを示します。書き込み動作中であれば"1"、それ以外の状態であれば"0"です。使用例を**図11**に示します。

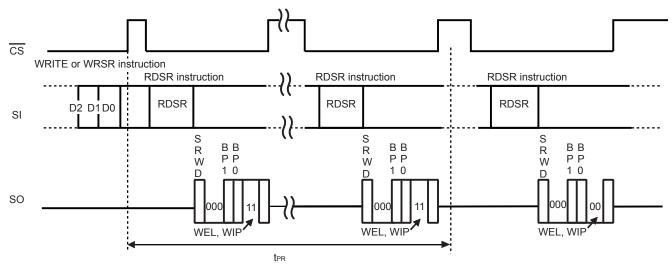


図11 書き込み動作中のWEL, WIPビット使用例

2. 書き込み許可 (WREN)

データの書き込み動作(WRITE と WRSR)を行う前には、Write Enable Latch(WEL)ビットをセットしなくてはなりません。本命令が、WEL ビットをセットする方法です。下記に動作を示します。

チップセレクト(\overline{CS})にてデバイスを選択後、シリアルデータ入力(\overline{SI})より命令コードを入力します。シリアルクロック(\overline{SCK})の 8 発目で、 \overline{CS} でデバイスを非選択状態にすることにより WEL ビットがセットされます。チップセレクト(\overline{CS})が "L" の期間中に、規定数($\overline{n}=8$ クロック)と異なるクロックを入力した場合、WREN命令はキャンセルされます。

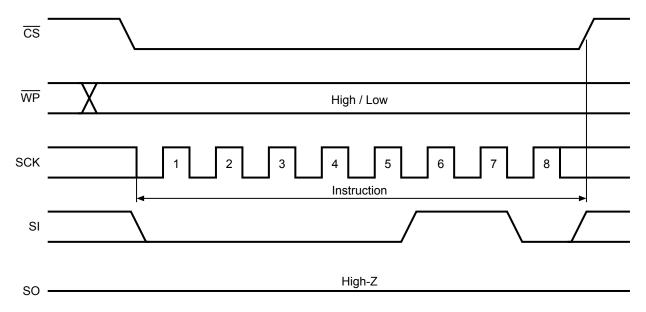


図12 WREN動作

3. 書き込み禁止 (WRDI)

WRDI 命令は、Write Enable Latch(WEL)ビットをリセットする 1 つの方法です。チップセレクト($\overline{\text{CS}}$)にてデバイスを選択後、シリアルデータ入力($\overline{\text{SI}}$)より命令コードを入力します。

シリアルクロック (SCK) の 8 発目で、チップセレクト ($\overline{\text{CS}}$) でデバイスを非選択状態することにより WEL ビットがリセットされます。

チップセレクト($\overline{\text{CS}}$)が "L" の期間中に、規定数($\mathsf{n} = 8$ クロック)と異なるクロックを入力した場合、WRDI命令はキャンセルされます。

WEL ビットは、下記に示す動作実行後にリセットされます。

- 電源電圧の低下時
- 電源投入時
- WRDI 実行後
- · WRSR 命令での書き込み動作完了後
- · WRITE 命令での書き込み動作完了後

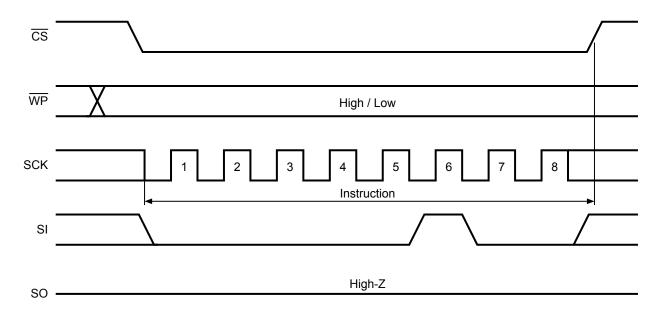


図13 WRDI動作

4. ステータスレジスタ読み出し(RDSR)

RDSR命令は、ステータスレジスタのデータを読み出すことができます。書き込み動作進行中に、WIPビットをチェックすることにより書き込み動作の進行を確認することができます。

最初にチップセレクト (\overline{CS}) を "L" とします。その後命令コードをシリアルデータ入力 (SI) より入力すると、シリアルデータ出力 (SO) よりステータスレジスタの現在のビットの状態が出力されます。

ステータスレジスタは、連続して読み出すことが可能です。チップセレクト($\overline{\text{CS}}$)を "H" とすることにより、リードサイクルを終了させることができます。

ステータスレジスタは、いつでも読み出し可能です。書き込みサイクル中であってもステータスレジスタのビットは有効であり、RDSRにより読み出すことができます。

2つのビットWEL, WIPは書き込みサイクル進行中にアップデートされていきます。アップデートされた不揮発性ビットSRWD, BP1, BP0は、書き込みサイクル完了後、新たにRDSR命令を実行することで得ることができます。

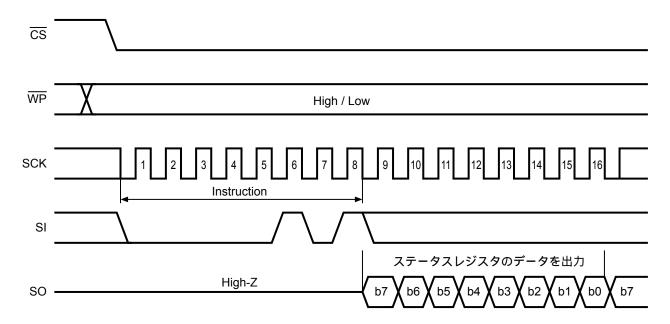


図14 RDSR動作

5. ステータスレジスタ書き込み (WRSR)

WRSR 命令は、ステータスレジスタの値(SRWD, BP1, BP0)を書き換えることができます。ステータスレジスタのb6, b5, b4, b1, b0 については書き換えできません。ステータスレジスタを読み出したときには、b6, b5, b4 はいつも "0" データで読み出されます。

WRSR 命令を実行する前に、WREN 命令にて WEL ビットをあらかじめセットしてください。WRSR の動作を下記に示します。

最初にチップセレクト(\overline{CS})を "L" とします。その後命令コード・データをシリアルデータ入力(\overline{CS})を "H" とり入力します。データ入力後または、次のシリアルクロック立ち上がり入力前にチップセレクト(\overline{CS})を "H" とすることにより、WRSR 書き込み動作を開始します(t_{PR})。WRSR 書き込み動作の間、WIP ビットの値を読み出すことにより動作状態を確認することができます。書き込み動作中であれば "1"、それ以外の状態であれば "0"です。書き込み動作が完了したときに WEL ビットはリセットされます。

WRSR 命令は、ユーザーがリードオンリーメモリとして取り扱う領域サイズを規定する BP1, BP0 の値を変更することが可能です。また、ライトプロテクト(WP)の状態によっては、SRWD ビットをセットまたはリセットすることも可能です。SRWD ビットとライトプロテクト(WP)の組み合わせによりデバイスはハードウェアプロテクトモード(HPM)に設定されます。このとき、WRSR 命令は実行されません。(「■ プロテクト動作」参照)

SRWD と BP1, BP0 の内容は、WRSR 命令実行中は、WRSR 命令前の値を保持しています。新しくアップデートされた値は、WRSR 命令の実行が完了した時点で変更されます。

チップセレクト($\overline{\text{CS}}$)が "L" の期間中に、規定数 (n = 16 クロック)と異なるクロックを入力した場合、WRSR 命令はキャンセルされます。

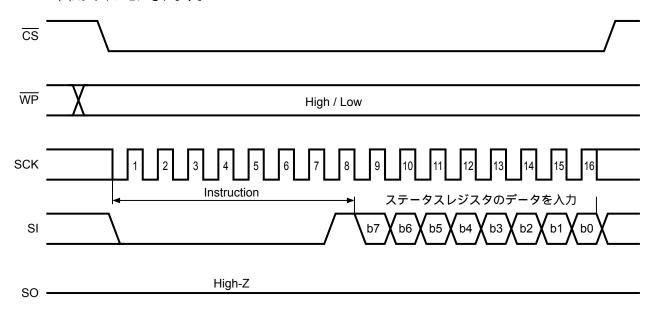
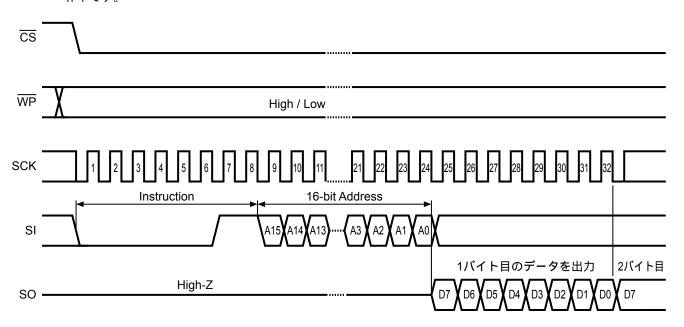


図15 WRSR動作


6. メモリデータ読み出し(READ)

下記に READ 動作を示します。チップセレクト(\overline{CS})に "L" 入力後、シリアルデータ入力(SI)より命令コード・アドレスを入力します。入力されたアドレスは、内部アドレスカウンタへロードされ、そしてアドレスのデータがシリアルデータ出力(SO)より出力されます。

続けてチップセレクト(\overline{CS})を "L"に維持したままシリアルクロック入力(SCK)を入力すると、自動的にアドレスがインクリメントされ、次のアドレスデータが順次出力されます。

最終アドレスがインクリメントされると、先頭アドレスにロールオーバーします。

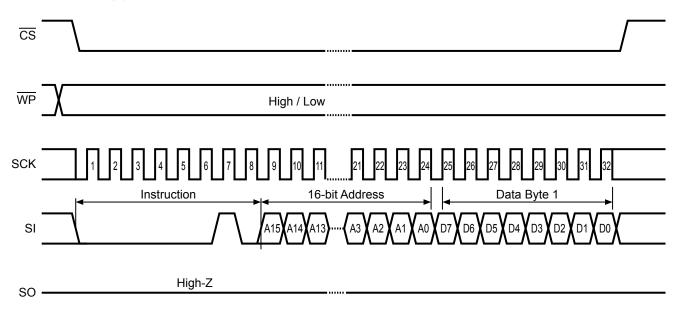
リードサイクルを終わらせるためには、チップセレクト($\overline{\text{CS}}$)を "H"にします。チップセレクトの立ち上がりはサイクル中いつでも可能です。READ命令コードが受け付けられない、または実行できない場合は、書き込み動作中です。

備考 上位アドレスA15~A11 = Don't careになります。

図16 READ動作

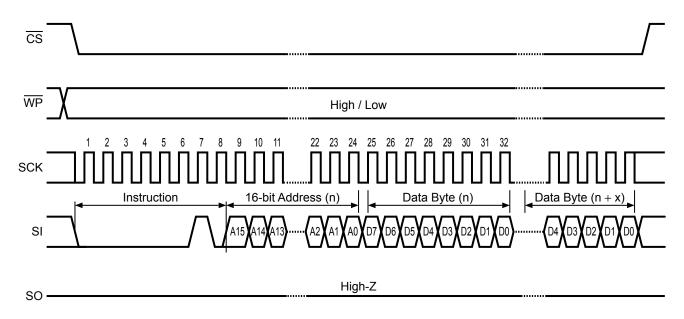
7. メモリデータ書き込み(WRITE)

図17に、1バイトのデータを入力した場合を示します。チップセレクト(\overline{CS})に "L" 入力後、シリアルデータ 入力 (SI) より命令コード・アドレス・データを入力します。データ入力後または、次のシリアルクロック立ち上がり入力前にチップセレクト(\overline{CS})を "H" とすることにより、WRITE動作を開始し(t_{PR})、書き込み動作が終了するとWIPビット、WELビットは "0" にリセットされます。


また、S-25C160Aは32バイトのページ書き込みが可能です。基本的なデータ転送手段はバイトライトと同様ですが、8ビットの書き込みデータをページサイズ分、連続して受け取ることでページ書き込みを行います。**図18**に示すWRITE動作(ページ)のようにチップセレクト($\overline{\text{CS}}$)に "L" 入力後、シリアルデータ入力(SI)より、命令コード・アドレス・データを入力します。引き続きチップセレクト($\overline{\text{CS}}$)を "L" としたまま、次のデータを入力します。以降、連続的に8ビットのデータ入力を繰り返します。最後にチップセレクト($\overline{\text{CS}}$)を "H" とすることにより、WRITE動作を開始します(t_{PR})。

アドレスの下位5ビットは、8ビットの書き込みデータを受け取るごとに自動的にインクリメントされます。したがって、書き込みデータが32バイトを越える場合であってもアドレスの上位ビットは変化せず、アドレスの下位5ビットがロールオーバーし、先に入力された書き込みデータは重ね書きされます。

WRITE命令が受け付けられないか、または実行されない場合を下記に示します。


- ・ WELビットが "1" にセットされていないとき (WRITE命令直前にあらかじめセットされていない)
- 書き込み動作中
- ・ 書き込むアドレスがBP1、BP0によってプロテクト領域となっている

チップセレクト(\overline{CS})が "L" の期間中に、規定数 (n = 24+m×8クロック)と異なるクロックを入力した場合、WRITE命令はキャンセルされます。

備考 上位アドレスA15~A11 = Don't careになります。

図17 WRITE動作 (1パイト)

備考 上位アドレスA15~A11 = Don't careになります。

図18 WRITE動作(ページ)

■ プロテクト動作

書き込み禁止ブロックの設定を**表16**に示します。また、デバイスのプロテクト動作について**表17**に示します。ステータスレジスタのStatus Register Write Disable(SRWD)ビットが"0"にリセット(出荷時には、リセット状態になっています)されているときには、ステータスレジスタの値を変更することが可能です。

SRWDビットが"1"にセットされたとき、下記に示す二つの状態があります。

- ・ ライトプロテクト (\overline{WP}) が "H" のとき、ステータスレジスタの書き込みが可能です。
- ・ ライトプロテクト (\overline{WP}) が "L" のとき、ステータスレジスタに書き込むことができません。このため、ステータスレジスタのプロテクトビット (BP1, BP0) によって設定されている書き込み禁止領域の変更はできません。

ハードウェアプロテクト(HPM)は、下記に示す動作により設定されます。

- ・ SRWDビットをセットした後、ライトプロテクト($\overline{\mathrm{WP}}$)を "L" にしたとき
- ・ ライトプロテクト (WP)を "L"にて、SRWDビットをセット完了したとき

図8,9にステータスレジスタ書き込みサイクルでのライトプロテクト有効タイミングとライトプロテクト無効タイミングを示します。

ライトプロテクト($\overline{\text{WP}}$)に "H"を入力することで、ハードウェアプロテクト(HPM)を解除することが可能です。 ライトプロテクト($\overline{\text{WP}}$)が "H"状態である場合、ハードウェアプロテクト(HPM)は機能せず、ステータスレジスタのプロテクトビット(BP1, BP0)によって設定されるソフトウェアプロテクト(SPM)のみの機能となります。

F1			
ステータス	スレジスタ	書き込み禁止領域	書き込み禁止ブロック
BP1	BP0	香さ込み赤瓜唄場	アドレス
0	0	0%	なし
0	1	25%	600h-7FFh
1	0	50%	400h-7FFh
1	1	100%	000h-7FFh

表16 書き込み禁止ブロックの設定

表17 プロテクト動作

WP 端子	SRWD ビット	WEL ビット	書き込み禁止 ブロック	通常ブロック	ステータスレジスタ
1	Χ	0	書き込み不可	書き込み不可	書き込み不可
1	Χ	1	書き込み不可	書き込み可	書き込み可
Χ	0	0	書き込み不可	書き込み不可	書き込み不可
Χ	0	1	書き込み不可	書き込み可	書き込み可
0	1	0	書き込み不可	書き込み不可	書き込み不可
0	1	1	書き込み不可	書き込み可	書き込み不可
	1 1 X X 0	WP端子 ビット 1 X 1 X X 0 X 0 0 1	WP端子 ビット ビット 1 X 0 1 X 1 X 0 0 X 0 1 0 1 0	WP 端子 ビット ブロック 1 X 0 書き込み不可 1 X 1 書き込み不可 X 0 0 書き込み不可 X 0 1 書き込み不可 0 1 0 書き込み不可	WP 端子 ビット ブロック 1 X 0 書き込み不可 書き込み不可 1 X 1 書き込み不可 書き込み不可 X 0 0 書き込み不可 書き込み不可 X 0 1 書き込み不可 書き込み不可 0 1 0 書き込み不可 書き込み不可

備考 X = Don't care

■ ホールド動作

ホールドは、デバイスを非選択状態にせずにシリアルコミュニケーションを中断するために使用します。

ホールド状態では、シリアルデータ出力はHigh-Zとなり、シリアルデータ入力およびシリアルクロックは "Don't Care" となります。ホールド状態のときは、チップセレクト(\overline{CS})を "L" レベルにし、デバイスを選択状態にする必要があります。

通常、ホールド状態の期間、デバイスは選択状態を保持しますが、ホールド状態の期間に、デバイスを非選択状態にすることで、進行中の動作を終了することができます。

図19にホールド動作を示します。シリアルクロック(SCK)が "L" の状態で、ホールド($\overline{\text{HOLD}}$)を "L" にした場合、ホールド($\overline{\text{HOLD}}$)の切り替わりと同時にホールド状態を開始し、ホールド($\overline{\text{HOLD}}$)を "H" にした場合、ホールド($\overline{\text{HOLD}}$)の切り替わりと同時にホールド状態を終了します。

シリアルクロック(SCK)が "H"の状態で、ホールド($\overline{\text{HOLD}}$)を "L"にした場合、ホールド($\overline{\text{HOLD}}$)の切り替わり後、シリアルクロック(SCK)が "L"となったときホールド状態を開始し、ホールド($\overline{\text{HOLD}}$)を "H"にした場合、ホールド($\overline{\text{HOLD}}$)の切り替わり後、シリアルクロック(SCK)が "L"となったときホールド状態を終了します。

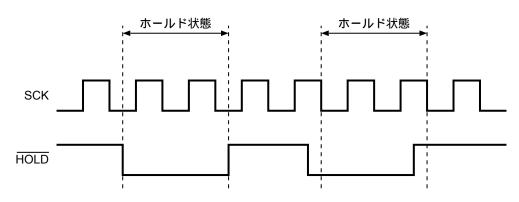


図19 ホールド動作

■ 低電源電圧時の書き込み禁止機能

S-25C160Aは低電源電圧の検出回路を内蔵し、電源電圧の低下時および電源投入時には書き込み動作(WRITE, WRSR)をキャンセルすると共に自動的に書き込み禁止状態(WRDI)となりWELビットがリセットされます。検出電圧、解除電圧は1.20 V Typ.です(**図20**参照)。

したがって、電源電圧が低下し再び書き込み可能な電圧まで上昇した後に書き込み動作を行う場合には、書き込み動作 (WRITE, WRSR)を行う前に、必ずWrite Enable Latch (WEL) ビットをセットしなくてはなりません。

また、書き込み動作中に電源電圧が低下した場合は、書き込みを行っていたアドレスのデータは保証されません。

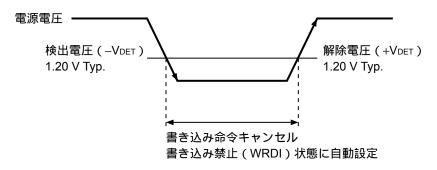


図20 低電源電圧時の動作

■ 入出力端子について

1. 入力端子の接続について

S-25C160Aの入力端子は、すべてCMOS構造になっておりますので、本製品の動作時にはハイインピーダンスが入力されないように設計してください。特に「電源ON / OFF時」や「動作待機時」は $\overline{\text{CS}}$ 入力を非選択状態 "H" にしてください。データの誤書き込みは、 $\overline{\text{CS}}$ 端子が非選択状態 "H" であれば起こりません。 $\overline{\text{CS}}$ 端子を抵抗(10 k Ω ~100 k Ω のプルアップ抵抗)を介して V_{CC} に接続してください。

CS 端子と SCK 端子が同時に "L" から "H" に遷移すると、SI 端子からデータが取り込まれることがあります。 より確実に誤動作を防止するためには、SCK端子をGNDにプルダウン処理することを推奨します。また、SI, \overline{WP} , \overline{HOLD} 端子をそれぞれ V_{CC} にプルアップ処理、あるいは \overline{GND} にプルダウン処理することを推奨します。 \overline{WP} , \overline{HOLD} 端子に関しては、使用しない場合は \overline{V}_{CC} に直接接続することも可能です。

2. 入力、出力端子等価回路

S-25C160Aの入力端子の等価回路を**図21,22**に示します。各入力端子にはプルアップおよびプルダウン素子は内蔵していませんので、フローティング状態にならないよう、設計の際は十分にご注意ください。

図23に出力端子の等価回路を示します。出力端子は "H" / "L" / High-Zのトライステート出力になります。

2.1 入力端子

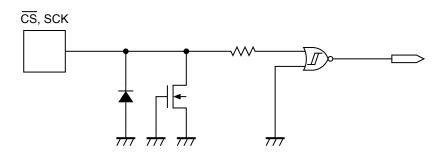


図21 CS, SCK端子

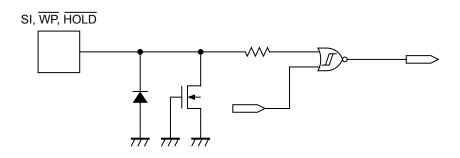


図22 SI, WP, HOLD 端子

2.2 出力端子

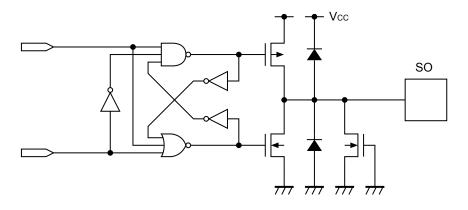
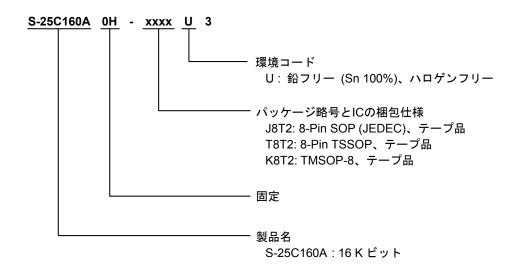


図23 SO端子

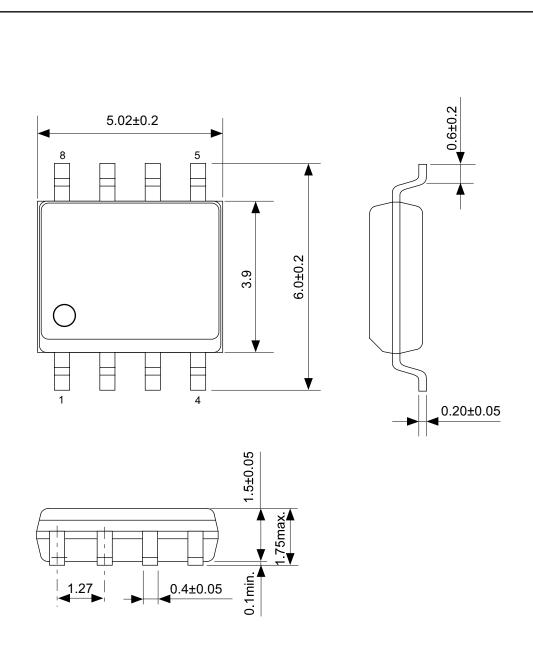
3. 使用上の注意


- ・S-25C160Aに限らず半導体デバイスは絶対最大定格を越えて使用しないでください。とくに電源電圧には十分注意してください。定格外の瞬間的なサージ電圧がラッチアップや、誤動作の原因になります。詳しい使用条件は、データシート記載の項目を十分にご確認の上、使用してください。
- ・S-25C160Aの端子に水分が付着したまま動作させますと端子間で短絡して誤動作する可能性があります。とくに お客様の評価中に低温の恒温槽からS-25C160Aを取り出したときなどに、S-25C160Aの端子に霜がついた場合、 このまま動作させますと端子間が水分によって短絡し誤動作する可能性がありますので、ご注意ください。 また結露しやすい場所での使用の際も同様の理由で、十分に注意が必要です。

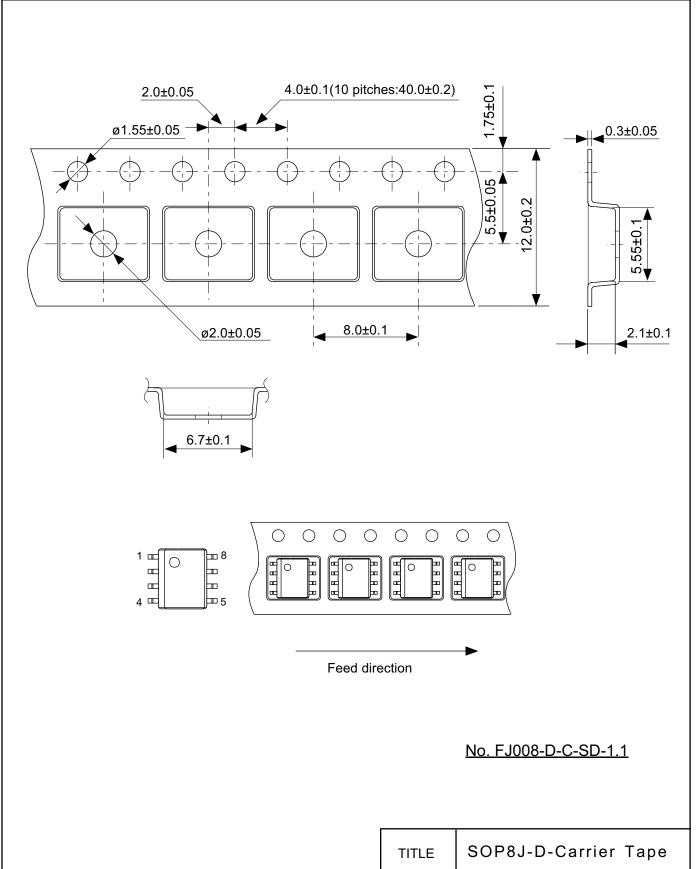
■ 注意事項

- ・本ICは静電気に対する保護回路が内蔵されていますが、保護回路の性能を越える過大静電気がICに印加されないようにしてください。
- ・弊社ICを使用して製品を作る場合には、その製品での本ICの使い方や製品の仕様また、出荷先の国などによって本ICを含めた製品が特許に抵触した場合、その責任は負いかねます。

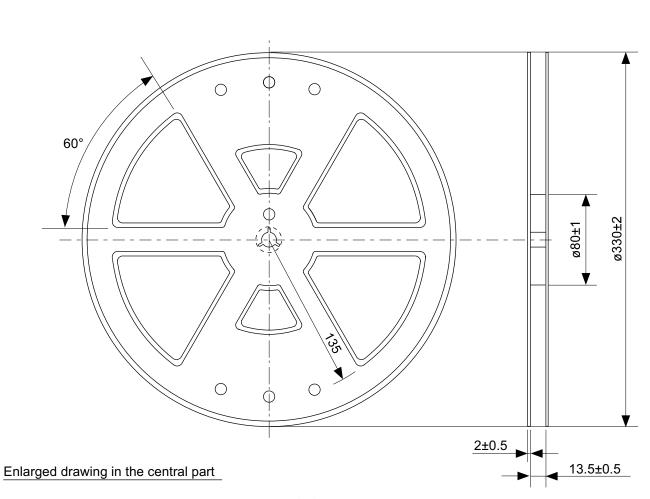
■ 品目コードの構成

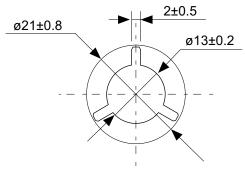

1. 製品名

備考 上記以外の品目コードの製品をご希望のときは、弊社営業部までお問い合わせください。

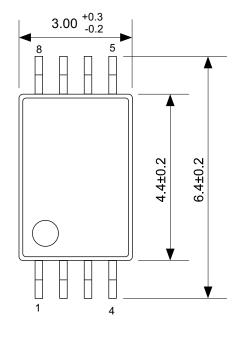

2. パッケージ

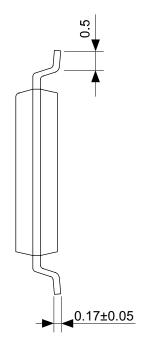
パッケージ名		図面コード	
ハッケーシ名	パッケージ図面	テープ図面	リール図面
8-Pin SOP (JEDEC)	FJ008-A-P-SD	FJ008-D-C-SD	FJ008-D-R-S1
8-Pin TSSOP	FT008-A-P-SD	FT008-E-C-SD	FT008-E-R-S1
TMSOP-8	FM008-A-P-SD	FM008-A-C-SD	FM008-A-R-SD

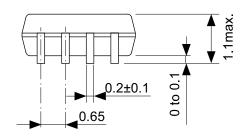



No. FJ008-A-P-SD-2.2

TITLE	SOP8J-D-PKG Dimensions	
No.	FJ008-A-P-SD-2.2	
ANGLE	\bigoplus	
UNIT	mm	
ABLIC Inc.		

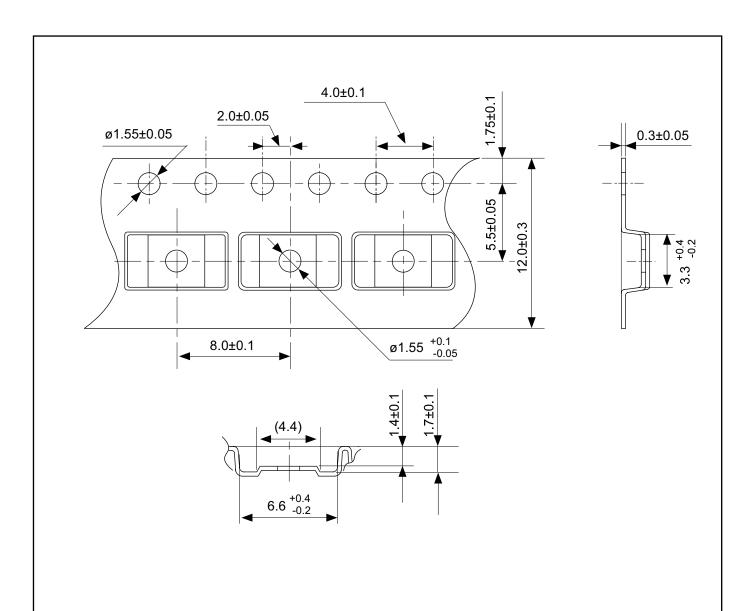

TITLE	SOP8J-D-Carrier Tape	
No.	FJ008-D-C-SD-1.1	
ANGLE		
UNIT	mm	
ABLIC Inc.		

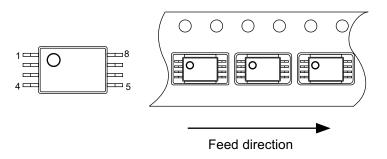




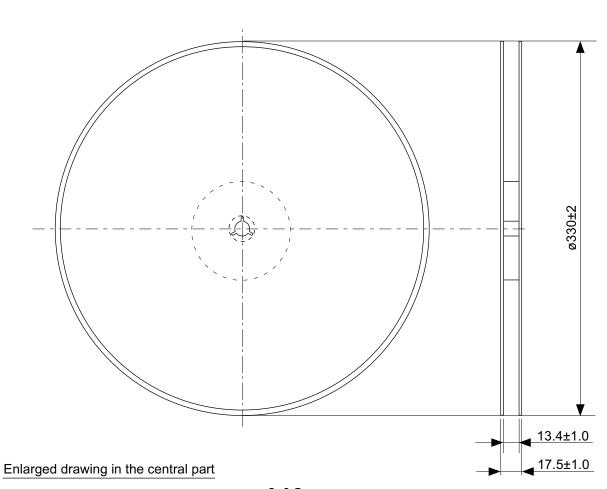
No. FJ008-D-R-S1-1.0

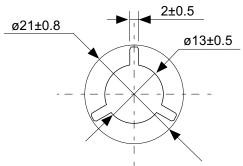
TITLE	SOF	8J-D-Re	eel
No.	FJ008	3-D-R-S1	-1.0
ANGLE		QTY. 4,000	
UNIT	mm		
ABLIC Inc.			



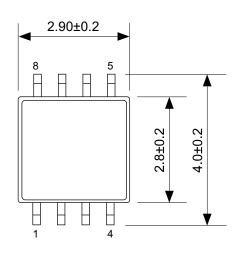


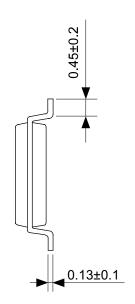
No. FT008-A-P-SD-1.2


TITLE	TSSOP8-E-PKG Dimensions
No.	FT008-A-P-SD-1.2
ANGLE	\$
UNIT	mm
ABLIC Inc.	



No. FT008-E-C-SD-1.0

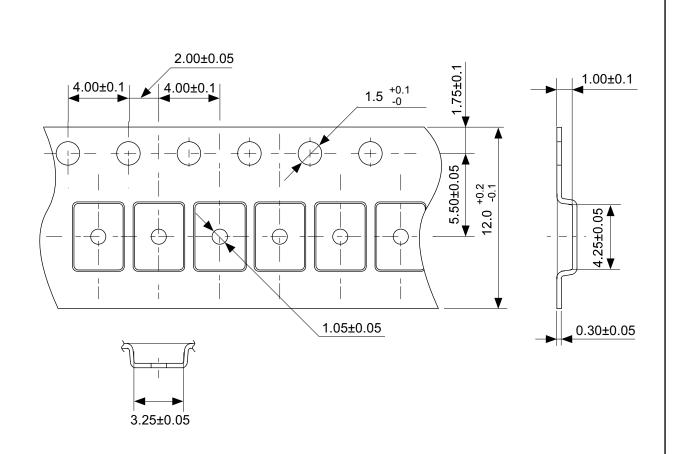

TITLE	TSSOP8-E-Carrier Tape	
No.	FT008-E-C-SD-1.0	
ANGLE		
UNIT	mm	
ABLIC Inc.		

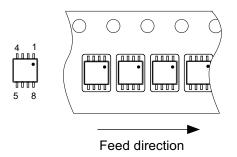




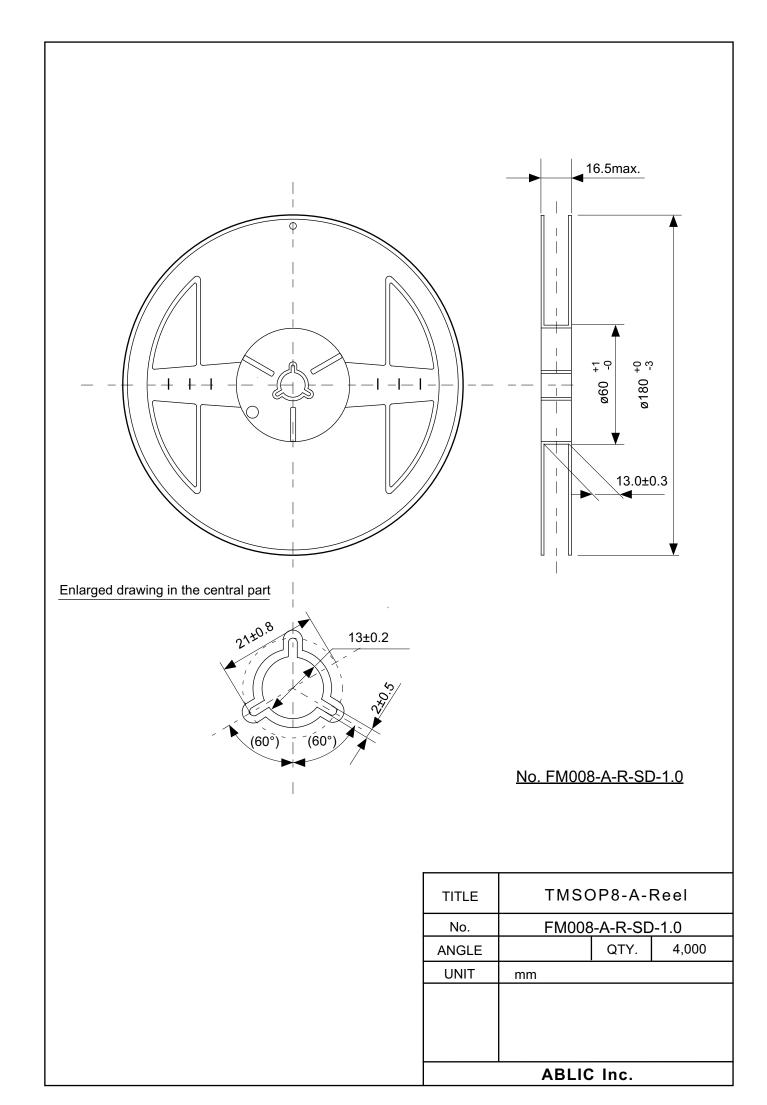
No. FT008-E-R-S1-1.0

TITLE	TSSO	P8-E-R	eel
No.	FT00	8-E-R-S1	-1.0
ANGLE		QTY.	4,000
UNIT	mm		
ABLIC Inc.			





No. FM008-A-P-SD-1.2


TITLE	TMSOP8-A-PKG Dimensions	
No.	FM008-A-P-SD-1.2	
ANGLE	Q	
UNIT	mm	
ABLIC Inc.		

No. FM008-A-C-SD-2.0

TITLE	TMSOP8-A-Carrier Tape
No.	FM008-A-C-SD-2.0
ANGLE	
UNIT	mm
ABLIC Inc.	

免責事項 (取り扱い上の注意)

- 1. 本資料に記載のすべての情報 (製品データ、仕様、図、表、プログラム、アルゴリズム、応用回路例等) は本資料発行時点のものであり、予告なく変更することがあります。
- 2. 本資料に記載の回路例および使用方法は参考情報であり、量産設計を保証するものではありません。本資料に記載の 情報を使用したことによる、本資料に記載の製品 (以下、本製品といいます) に起因しない損害や第三者の知的財産 権等の権利に対する侵害に関し、弊社はその責任を負いません。
- 3. 本資料の記載に誤りがあり、それに起因する損害が生じた場合において、弊社はその責任を負いません。
- 4. 本資料に記載の範囲内の条件、特に絶対最大定格、動作電圧範囲、電気的特性等に注意して製品を使用してください。 本資料に記載の範囲外の条件での使用による故障や事故等に関する損害等について、弊社はその責任を負いません。
- 5. 本製品の使用にあたっては、用途および使用する地域、国に対応する法規制、および用途への適合性、安全性等を確認、試験してください。
- 6. 本製品を輸出する場合は、外国為替および外国貿易法、その他輸出関連法令を遵守し、関連する必要な手続きを行ってください。
- 7. 本製品を大量破壊兵器の開発や軍事利用の目的で使用および、提供 (輸出) することは固くお断りします。核兵器、生物兵器、化学兵器およびミサイルの開発、製造、使用もしくは貯蔵、またはその他の軍事用途を目的とする者へ提供 (輸出) した場合、弊社はその責任を負いません。
- 8. 本製品は、生命・身体に影響を与えるおそれのある機器または装置の部品および財産に損害を及ぼすおそれのある機器または装置の部品(医療機器、防災機器、防犯機器、燃焼制御機器、インフラ制御機器、車両機器、交通機器、車載機器、航空機器、宇宙機器、および原子力機器等)として設計されたものではありません。上記の機器および装置には使用しないでください。ただし、弊社が車載用等の用途を事前に明示している場合を除きます。上記機器または装置の部品として本製品を使用された場合または弊社が事前明示した用途以外に本製品を使用された場合、これらにより発生した損害等について、弊社はその責任を負いません。
- 9. 半導体製品はある確率で故障、誤動作する場合があります。本製品の故障や誤動作が生じた場合でも人身事故、火災、 社会的損害等発生しないように、お客様の責任において冗長設計、延焼対策、誤動作防止等の安全設計をしてくださ い。また、システム全体で十分に評価し、お客様の責任において適用可否を判断してください。
- 10. 本製品は、耐放射線設計しておりません。お客様の用途に応じて、お客様の製品設計において放射線対策を行ってください。
- 11. 本製品は、通常使用における健康への影響はありませんが、化学物質、重金属を含有しているため、口中には入れないようにしてください。また、ウエハ、チップの破断面は鋭利な場合がありますので、素手で接触の際は怪我等に注意してください。
- 12. 本製品を廃棄する場合には、使用する地域、国に対応する法令を遵守し、適切に処理してください。
- 13. 本資料は、弊社の著作権、ノウハウに係わる内容も含まれております。本資料中の記載内容について、弊社または第三者の知的財産権、その他の権利の実施、使用を許諾または保証するものではありません。本資料の一部または全部を弊社の許可なく転載、複製し、第三者に開示することは固くお断りします。
- 14. 本資料の内容の詳細その他ご不明な点については、販売窓口までお問い合わせください。
- 15. この免責事項は、日本語を正本として示します。英語や中国語で翻訳したものがあっても、日本語の正本が優越します。

2.4-2019.07

