# S-5741 B系列



www.ablic.com

工作温度125°C 高耐压 高速 交变检测型 霍尔效应IC

© ABLIC Inc., 2016-2021 Rev.1.1 00

本IC是采用CMOS技术开发的高耐压、高速检测、高精度磁特性交变检测型的霍尔效应IC。可通过检测磁束密度的强弱以及极性变化,使输出电压发生变化。通过与磁石的组合,可对各种设备的翻转进行检测。本IC还内置了输出电流限制电路。本IC由于采用了小型的SOT-23-3S封装,因此可高密度安装。还具备高精度磁特性,故与磁石组合的机械构造的工作偏差可变少。

本公司可根据用户的机械构造推荐磁石与本公司霍尔效应IC的最佳组合,为用户提供 "磁力模拟分析服务"。通过灵活应用此磁力模拟分析服务,可削减试产次数、开发周期和开发费用,为实现最优化产品更高的性能价格比做出贡献。有关磁力模拟分析服务的实施详情,请向代理商咨询。

#### ■ 特点

• 极性检测: 交变检测

● 输出逻辑\*1: 检测S极时Vouт = "L"

检测S极时Vout = "H"

• 输出方式\*1: N沟道开路漏极输出

N沟道驱动器 + 内置上拉电阻

● 磁性灵敏度\*1: Bop = 1.8 mT (典型值)

Bop = 3.0 mT (典型值)

B<sub>OP</sub> = 6.0 mT (典型值)

 $V_{DD} = 3.5 V \sim 26.0 V$ 

 $Ta = -40^{\circ}C \sim +125^{\circ}C$ 

斩波频率: f<sub>C</sub> = 500 kHz (典型值)
输出延迟时间: t<sub>D</sub> = 8.0 μs (典型值)

电源电压范围:内置稳压器

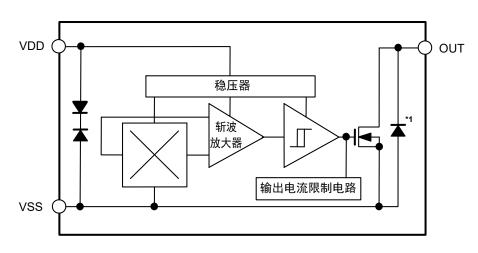
• 内置输出电流限制电路

• 工作温度范围:

• 无铅 (Sn 100%)、无卤素

\***1.** 可以选项。

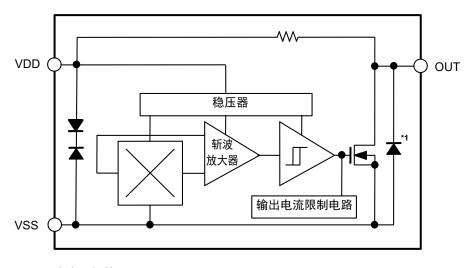
#### ■ 用途


- 家用电器产品
- DC无刷电动机
- 住宅设备
- 各种产业设备

# ■ 封装

• SOT-23-3S

# ■ 框图

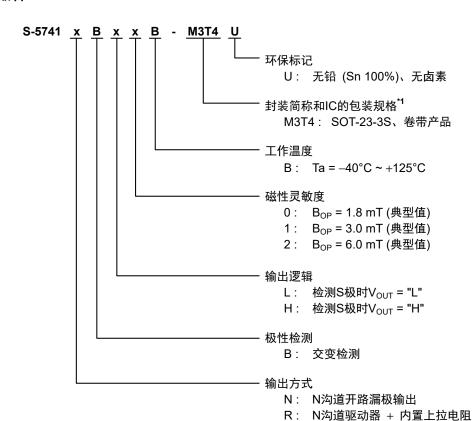

# 1. N沟道开路漏极输出产品



\*1. 寄生二极管

图1

# 2. N沟道驱动器 + 内置上拉电阻产品




\*1. 寄生二极管

图2

# ■ 产品型号的构成

# 1. 产品名



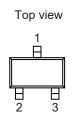
**\*1.** 请参阅卷带图。

#### 2. 封装

表1 封装图纸号码

| 封装名       | 外形尺寸图        | 卷带图          | 带卷图          |  |
|-----------|--------------|--------------|--------------|--|
| SOT-23-3S | MP003-D-P-SD | MP003-D-C-SD | MP003-D-R-SD |  |

# 3. 产品名目录


表2

| 产品名               | 输出方式            | 极性检测 | 输出逻辑                        | 磁性灵敏度 (B <sub>OP</sub> ) |
|-------------------|-----------------|------|-----------------------------|--------------------------|
| S-5741NBL0B-M3T4U | N沟道开路漏极输出       | 交变检测 | 检测S极时Vour = "L"             | 1.8 mT (典型值)             |
| S-5741NBL1B-M3T4U | N沟道开路漏极输出       | 交变检测 | 检测S极时V <sub>OUT</sub> = "L" | 3.0 mT (典型值)             |
| S-5741NBL2B-M3T4U | N沟道开路漏极输出       | 交变检测 | 检测S极时Vo∪т = "L"             | 6.0 mT (典型值)             |
| S-5741NBH1B-M3T4U | N沟道开路漏极输出       | 交变检测 | 检测S极时Vo∪т = "H"             | 3.0 mT (典型值)             |
| S-5741RBL0B-M3T4U | N沟道驱动器 + 内置上拉电阻 | 交变检测 | 检测S极时V <sub>OUT</sub> = "L" | 1.8 mT (典型值)             |
| S-5741RBL1B-M3T4U | N沟道驱动器 + 内置上拉电阻 | 交变检测 | 检测S极时Vo∪т = "L"             | 3.0 mT (典型值)             |
| S-5741RBL2B-M3T4U | N沟道驱动器 + 内置上拉电阻 | 交变检测 | 检测S极时Vo∪т = "L"             | 6.0 mT (典型值)             |
| S-5741RBH0B-M3T4U | N沟道驱动器 + 内置上拉电阻 | 交变检测 | 检测S极时V <sub>OUT</sub> = "H" | 1.8 mT (典型值)             |
| S-5741RBH1B-M3T4U | N沟道驱动器 + 内置上拉电阻 | 交变检测 | 检测S极时Vo∪т = "H"             | 3.0 mT (典型值)             |
| S-5741RBH2B-M3T4U | N沟道驱动器 + 内置上拉电阻 | 交变检测 | 检测S极时Vout = "H"             | 6.0 mT (典型值)             |

**备注** 如果需要上述以外的产品时,请向代理商咨询。

# ■ 引脚排列图

#### 1. SOT-23-3S



| 引脚号 | 符号  | 描述    |  |  |  |  |  |  |
|-----|-----|-------|--|--|--|--|--|--|
| 1   | VSS | GND端子 |  |  |  |  |  |  |
| 2   | VDD | 电源端子  |  |  |  |  |  |  |
| 3   | OUT | 输出端子  |  |  |  |  |  |  |

图3

# ■ 绝对最大额定值

表4

(除特殊注明以外: Ta = +25°C)

|        | 项目                | 符号               | 绝对最大额定值                           | 单位 |
|--------|-------------------|------------------|-----------------------------------|----|
| 电源电压   |                   | $V_{DD}$         | $V_{SS} - 0.3 \sim V_{SS} + 28.0$ | V  |
| 输出电流   |                   | Гоит             | 20                                | mA |
| 输出电压   | N沟道开路漏极输出产品       |                  | $V_{SS} - 0.3 \sim V_{SS} + 28.0$ | V  |
| 拥山电压   | N沟道驱动器 + 内置上拉电阻产品 | Vоит             | $V_{SS} - 0.3 \sim V_{DD} + 0.3$  | V  |
| 工作环境温度 |                   | Topr             | <b>−40 ~ +125</b>                 | °C |
| 保存温度   |                   | T <sub>stg</sub> | <b>−40 ~ +150</b>                 | °C |

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

# ■ 热敏电阻值

表5

| 项目       | 符号     | 条件        |         | 最小值 | 典型值 | 最大值  | 单位   |
|----------|--------|-----------|---------|-----|-----|------|------|
|          |        | Board A   | _       | 200 | ı   | °C/W |      |
|          | hetaJA | SOT-23-3S | Board B | _   | 165 | -    | °C/W |
| 结至环境热阻*1 |        |           | Board C | _   | ı   | -    | °C/W |
|          |        |           | Board D | _   | -   | -    | °C/W |
|          |        |           | Board E |     | ı   | -    | °C/W |

<sup>\*1.</sup> 测定环境: 遵循JEDEC STANDARD JESD51-2A标准

备注 关于详情,请参阅 "■ Power Dissipation" 和 "Test Board"。

# ■ 电气特性

表6

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 12.0 V, V<sub>SS</sub> = 0 V)

|                   |                   | (15/14/2/17/17/17/17/17/17/17/17/17/17/17/17/17/                                                 | ,,,, | :== 0, |      | ,   | ,        |
|-------------------|-------------------|--------------------------------------------------------------------------------------------------|------|--------|------|-----|----------|
| 项目                | 符号                | 条件                                                                                               | 最小值  | 典型值    | 最大值  | 单位  | 测定<br>电路 |
| 电源电压              | $V_{DD}$          | -                                                                                                | 3.5  | 12.0   | 26.0 | V   | _        |
| 消耗电流              | Ipp               | N沟道开路漏极输出产品<br>平均值                                                                               | _    | 3.0    | 4.0  | mA  | 1        |
| /月4七吧///          | טטי               | N沟道驱动器 + 内置上拉电阻产品<br>平均值, Vουτ = "H"                                                             | _    | 3.0    | 4.0  | mA  | 1        |
| 输出电压              | V <sub>оит</sub>  | N沟道开路漏极输出产品<br>输出晶体管N沟道, Vout = "L", lout = 10 mA                                                | _    | Ι      | 0.4  | V   | 2        |
| 柳山屯压              | <b>V</b> 001      | N沟道驱动器 + 内置上拉电阻产品<br>输出晶体管N沟道, Vout = "L", lout = 10 mA                                          | _    | ı      | 0.5  | ٧   | 2        |
| 输出下降电压            | V <sub>D</sub>    | N沟道驱动器 + 内置上拉电阻产品<br>V <sub>OUT</sub> = "H", V <sub>D</sub> = V <sub>DD</sub> – V <sub>OUT</sub> | -    | I      | 20   | mV  | 2        |
| 泄漏电流              | I <sub>LEAK</sub> | N沟道开路漏极输出产品<br>输出晶体管N沟道, Vout = "H" = 26.0 V                                                     | -    | -      | 10   | μΑ  | 3        |
| 输出限制电流            | I <sub>OM</sub>   | V <sub>OUT</sub> = 12.0 V                                                                        | 22   | _      | 70   | mA  | 3        |
| 输出延迟时间            | $t_D$             | _                                                                                                | _    | 8.0    | _    | μs  | _        |
| 斩波频率              | fc                | _                                                                                                | _    | 500    | _    | kHz | _        |
| 启动时间              | tpon              | _                                                                                                | _    | 20     | _    | μs  | 4        |
| <br> <br>  输出上升时间 | 4_                | N沟道开路漏极输出产品<br>C = 20 pF, R = 820 Ω                                                              | -    | ı      | 2.0  | μs  | 5        |
| N                 |                   | N沟道驱动器 + 内置上拉电阻产品<br>C = 20 pF                                                                   | _    | _      | 6.0  | μs  | 5        |
| 输出下降时间            | t <sub>F</sub>    | C = 20 pF, R = 820 Ω                                                                             | _    | _      | 2.0  | μs  | 5        |
| 上拉电阻              | $R_L$             | N沟道驱动器 + 内置上拉电阻产品                                                                                | 7    | 10     | 13   | kΩ  | _        |

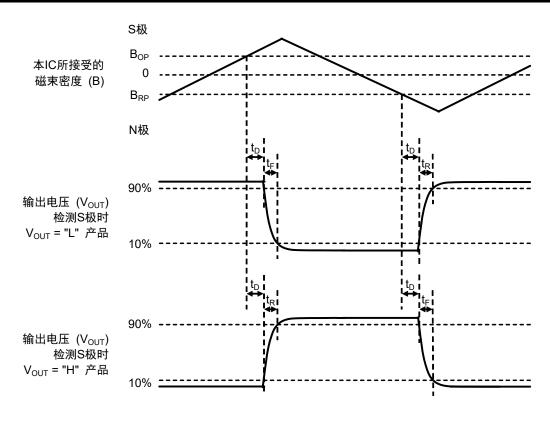



图4 工作时序

# ■ 磁特性

#### 1. B<sub>OP</sub> = 1.8 mT (典型值) 产品

#### 表7

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 12.0 V, V<sub>SS</sub> = 0 V)

| 项目     |    | 符号               | 条件                                                   | 最小值  | 典型值  | 最大值  | 单位 | 测定电路 |
|--------|----|------------------|------------------------------------------------------|------|------|------|----|------|
| 工作点*1  | S极 | Вор              | -                                                    | 0.3  | 1.8  | 3.3  | mT | 4    |
| 复位点*2  | N极 | B <sub>RP</sub>  | -                                                    | -3.3 | -1.8 | -0.3 | mT | 4    |
| 滞后幅度*3 |    | B <sub>HYS</sub> | B <sub>HYS</sub> = B <sub>OP</sub> - B <sub>RP</sub> | ı    | 3.6  | I    | mT | 4    |

#### 2. Bop = 3.0 mT (典型值) 产品

#### 表8

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 12.0 V, V<sub>SS</sub> = 0 V)

| 项目     |    | 符号                | 条件                                                   | 最小值  | 典型值  | 最大值  | 单位 | 测定电路 |
|--------|----|-------------------|------------------------------------------------------|------|------|------|----|------|
| 工作点*1  | S极 | Вор               | -                                                    | 1.5  | 3.0  | 4.5  | mT | 4    |
| 复位点*2  | N极 | B <sub>RP</sub>   | _                                                    | -4.5 | -3.0 | -1.5 | mT | 4    |
| 滞后幅度*3 |    | B <sub>H</sub> YS | B <sub>HYS</sub> = B <sub>OP</sub> - B <sub>RP</sub> | _    | 6.0  | _    | mT | 4    |

#### 3. Bop = 6.0 mT (典型值) 产品

#### 表9

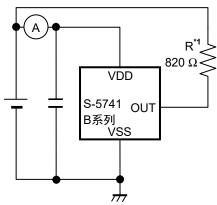
(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 12.0 V, V<sub>SS</sub> = 0 V)

| 项目     |    | 符号              | 条件                                                   | 最小值  | 典型值  | 最大值  | 单位 | 测定电路 |
|--------|----|-----------------|------------------------------------------------------|------|------|------|----|------|
| 工作点*1  | S极 | Вор             | _                                                    | 3.0  | 6.0  | 9.0  | mT | 4    |
| 复位点*2  | N极 | B <sub>RP</sub> | -                                                    | -9.0 | -6.0 | -3.0 | mT | 4    |
| 滞后幅度*3 |    | Внуѕ            | B <sub>HYS</sub> = B <sub>OP</sub> - B <sub>RP</sub> |      | 12.0 | -    | mT | 4    |

<sup>\*1.</sup> Bop: 工作点

指本IC所接受的由磁石 (S极) 产生的磁束密度增强 (靠近磁石) 时,输出电压 (Vout) 切换时的磁束密度的值。直至施加比BRP更强的N极磁束密度为止,Vout会维持现状。

\*2. BRP: 复位点


指本IC所接受的由磁石 (N极) 产生的磁束密度增强 (靠近磁石) 时,输出电压 (Vout) 切换时的磁束密度的值。直至施加比Bop更强的S极磁束密度为止,Vout会维持现状。

\*3. BHYS: 滞后幅度

指Bop与BRP之间的磁束密度的差值。

备注 按照1 mT = 10 Gauss的公式换算磁束密度的单位mT。

# ■ 测定电路



\*1. N沟道驱动器 + 内置上拉电阻产品,不需要电阻 (R)。

#### 图5 测定电路1

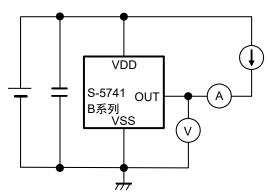



图6 测定电路2

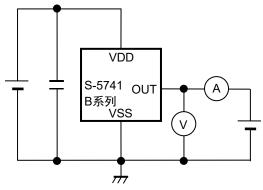
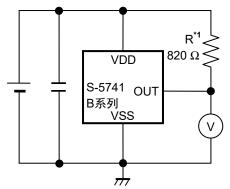
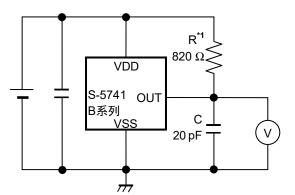
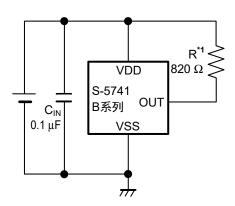





图7 测定电路3



\*1. N沟道驱动器 + 内置上拉电阻产品,不需要电阻 (R)。


图8 测定电路4



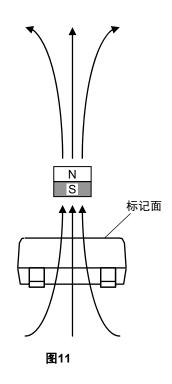
\*1. N沟道驱动器 + 内置上拉电阻产品,不需要电阻 (R)。

图9 测定电路5

# ■ 标准电路



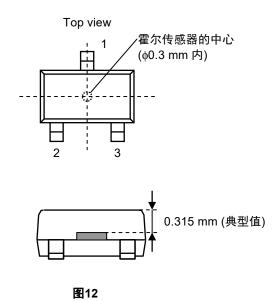
\*1. N沟道驱动器 + 内置上拉电阻产品,不需要电阻 (R)。


图10

注意 上述连接图以及参数并不作为保证电路工作的依据。实际的应用电路请在进行充分的实测基础上设定参数。

# ■ 工作说明

# 1. 施加磁束方向


本IC可针对标记面检测出垂直方向的磁束密度。 **图11**表示施加磁束的方向。

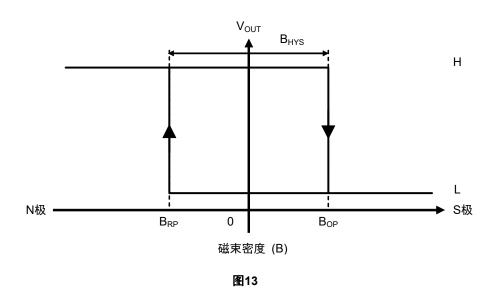


# 2. 霍尔传感器位置

图12表示霍尔传感器的位置。

霍尔传感器的中心位置如下图所示,处于封装中央的标有圆形标记的范围内。 另外,还标示出从封装的标记面到芯片表面的典型值距离。

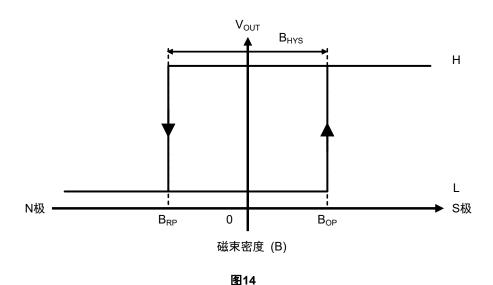



#### 3. 基本工作

本IC可通过磁石等所产生的磁束密度 (N极或S极) 的强弱以及极性变化来切换输出电压 (Vour)。

#### 3.1 检测S极时Vout = "L" 的产品

将磁石的S极靠近本IC的标记面,针对标记面,当垂直方向的S极的磁束密度超过工作点 (Bop) 时,Vout从 "H" 切换为 "L"。另外,将磁石的N极靠近本IC的标记面,当N极的磁束密度超过复位点 (BRP) 时,Vout从 "L" 切换为 "H"。若BRP<B<Bop, Vout会维持现状。


图13表示磁束密度与Vout之间的关系。



#### 3. 2 检测S极时Vout = "H" 的产品

将磁石的S极靠近本IC的标记面,针对标记面,当垂直方向的S极的磁束密度超过Bop时,Vout从 "L" 切换为 "H"。另外,将磁石的N极靠近本IC的标记面,当N极的磁束密度超过BRP时,Vout从 "H" 切换为 "L"。若BRP<B<Bop,Vout会维持现状。

图14表示磁束密度与Vour之间的关系。



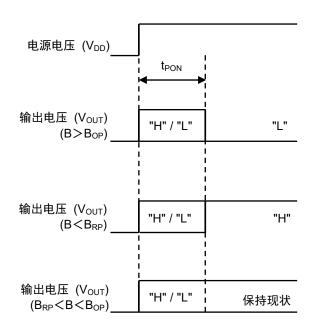

#### 4. 时序图

图15表示接通电源时的时序图。

电源电压 (VDD) 上升时的初期输出电压为 "H" 或 "L"。

VDD上升后, 在经过了启动时间 (tpon) 时, 若B>Bop (工作点) 或 B<BRP (复位点), 本IC则根据外加磁束密度输出Vouт。 VDD上升后, 在经过了tpon时, 若BRP<B<Bop, 本IC则保持初期输出电压。

#### 检测S极时Vout = "L" 的产品



#### 检测S极时Vout = "H" 的产品

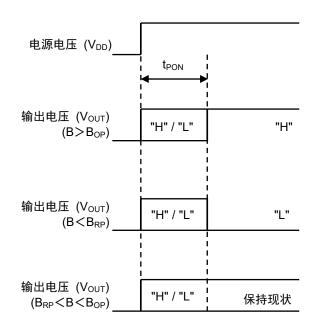


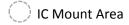


图15

# ■ 注意事项

- 如果将电源设置为高阻抗状态,有可能因击穿电流等而导致电源电压的下降,从而引发IC的误工作。因此,为降低阻抗,要充分注意接线方式。
- 请注意,如果电源电压发生急剧的变化,有可能导致IC的误工作。在电源电压发生急剧变化的环境下使用本IC时, 推荐多次读出IC的输出电压来对其进行判定。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 请注意,本IC虽内置输出电流限制电路,在超过绝对最大额定值的环境下,有可能造成产品劣化等物理性损伤。
- 请注意电源电压、上拉电压、上拉电阻的使用条件,使IC内的功耗不要超过容许功耗。
- 若对此IC施加较大的应力,则可能导致磁特性发生改变。在安装到基板上时或安装后的操作过程中,也要注意不要对此IC施加较大的应力
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因,使包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

# **■** Power Dissipation


# **SOT-23-3S**



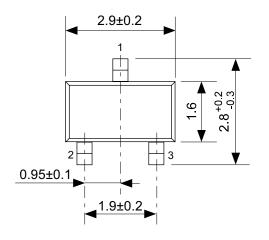
| Board | Power Dissipation (P <sub>D</sub> ) |
|-------|-------------------------------------|
| Α     | 0.63 W                              |
| В     | 0.76 W                              |
| С     | _                                   |
| D     | _                                   |
| Е     | _                                   |

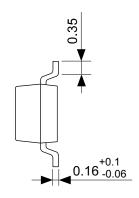
# **SOT-23-3/3S/5/6** Test Board

# (1) Board A





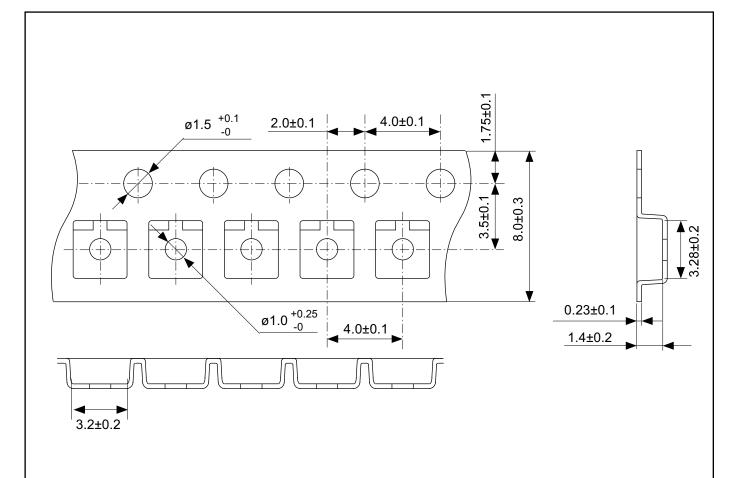

| Item                        |   | Specification                               |
|-----------------------------|---|---------------------------------------------|
| Size [mm]                   |   | 114.3 x 76.2 x t1.6                         |
| Material                    |   | FR-4                                        |
| Number of copper foil layer |   | 2                                           |
|                             | 1 | Land pattern and wiring for testing: t0.070 |
| Coppor foil lover [mm]      | 2 | -                                           |
| Copper foil layer [mm]      | 3 | -                                           |
|                             | 4 | 74.2 x 74.2 x t0.070                        |
| Thermal via                 |   | -                                           |

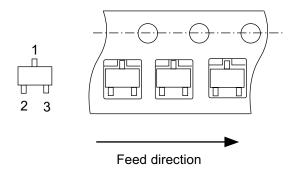

# (2) Board B



| Item                        |   | Specification                               |
|-----------------------------|---|---------------------------------------------|
| Size [mm]                   |   | 114.3 x 76.2 x t1.6                         |
| Material                    |   | FR-4                                        |
| Number of copper foil layer |   | 4                                           |
|                             | 1 | Land pattern and wiring for testing: t0.070 |
| Copper foil layer [mm]      | 2 | 74.2 x 74.2 x t0.035                        |
| Copper foil layer [min]     | 3 | 74.2 x 74.2 x t0.035                        |
|                             | 4 | 74.2 x 74.2 x t0.070                        |
| Thermal via                 |   | -                                           |

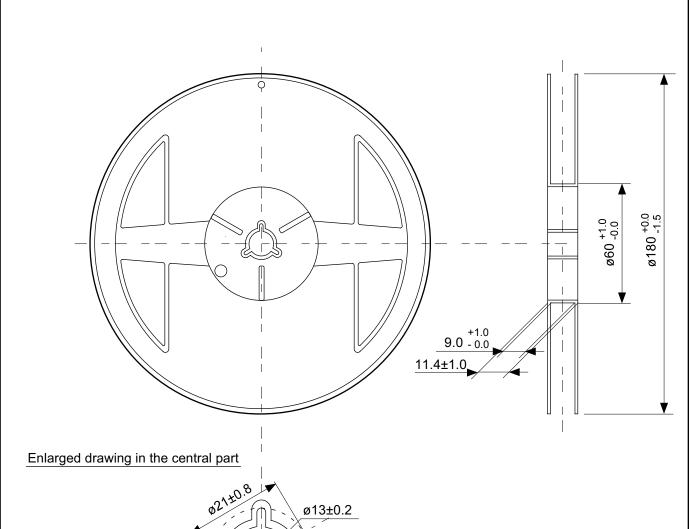
No. SOT23x-A-Board-SD-2.0

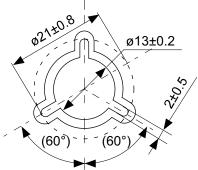





# No. MP003-D-P-SD-1.1


| SOT233S-A-PKG Dimensions |  |  |  |  |
|--------------------------|--|--|--|--|
| MP003-D-P-SD-1.1         |  |  |  |  |
| $\Phi$                   |  |  |  |  |
| mm                       |  |  |  |  |
|                          |  |  |  |  |
|                          |  |  |  |  |
|                          |  |  |  |  |
| ABLIC Inc.               |  |  |  |  |
|                          |  |  |  |  |






# No. MP003-D-C-SD-1.0

| TITLE      | SOT233S-A-Carrier Tape |  |  |  |  |
|------------|------------------------|--|--|--|--|
| No.        | MP003-D-C-SD-1.0       |  |  |  |  |
| ANGLE      |                        |  |  |  |  |
| UNIT       | mm                     |  |  |  |  |
|            |                        |  |  |  |  |
|            |                        |  |  |  |  |
|            |                        |  |  |  |  |
| 45.10.1    |                        |  |  |  |  |
| ABLIC Inc. |                        |  |  |  |  |





# No. MP003-D-R-SD-1.0

| TITLE      | SOT233S-A-Reel   |      |       |  |  |
|------------|------------------|------|-------|--|--|
| No.        | MP003-D-R-SD-1.0 |      |       |  |  |
| ANGLE      |                  | QTY. | 3,000 |  |  |
| UNIT       | mm               |      |       |  |  |
|            |                  |      |       |  |  |
|            |                  |      |       |  |  |
|            |                  |      |       |  |  |
| ABLIC Inc. |                  |      |       |  |  |

# 免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可能未经预告而更改。
- 2. 本资料记载的电路示例和使用方法仅供参考,并非保证批量生产的设计。使用本资料的信息后,发生并非因本资料记载的产品(以下称本产品)而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承担任何责任。
- 3. 因本资料记载错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本产品并非是设计用于可能对生命、人体造成影响的设备或装置的部件,也非是设计用于可能对财产造成损害的设备或装置的部件(医疗设备、防灾设备、安全防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。请勿将本产品用于上述设备或装置的部件。本公司事先明确标示的车载用途例外。作为上述设备或装置的部件使用本产品时,或本公司事先明确标示的用途以外使用本产品时,所导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。为了防止因本产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。本资料记载的内容并非是对本公司或第三方的知识产权、 其它权利的实施及使用的承诺或保证。严禁在未经本公司许可的情况下转载、复制或向第三方公开本资料的一部分或全 部。
- 14. 有关本资料的详细内容等如有不明之处,请向代理商咨询。
- 15. 本免责事项以日语版为正本。即使有英语版或中文版的翻译件, 仍以日语版的正本为准。

2.4-2019.07

