# S-5716系列



www.ablic.com

# 

© ABLIC Inc., 2011-2021 Rev.1.7\_00

本IC是采用CMOS技术开发的可低消耗电流工作的高精度霍尔效应开关IC。

它可检测出磁束密度的强弱,使输出电压发生变化。通过与磁石的组合,可对各种设备的开关进行检测。

由于采用小型SOT-23-3封装和超小型SNT-4A封装,因此可高密度安装。

本IC因具备高精度磁特性,故与磁石组合的工作偏差可变少。

本公司可根据用户的机械构造推荐磁石与本公司霍尔IC的最佳组合,为用户提供 "磁力模拟分析服务"。通过灵活应用此磁力模拟分析服务,可削减试产次数、开发周期和开发费用,为实现最优化产品更高的性能价格比做出贡献。 有关磁力模拟分析服务的实施详情,请向代理商咨询。

# ■ 特点

● 极性检测\*1: 检测两极、检测S极、检测N极

● 输出方式\*1: N沟道开路漏极输出、CMOS输出

● 磁性灵敏度\*1: B<sub>OP</sub> = 1.8 mT (典型值)

Bop = 3.0 mT (典型值) Bop = 3.4 mT (典型值) Bop = 4.5 mT (典型值)

B<sub>OP</sub> = 7.0 mT (典型值)

• 驱动周期 (消耗电流): 检测两极产品

tcycle = 50.50 ms (I<sub>DD</sub> = 4.0 μA) (典型值)

检测S极、N极产品

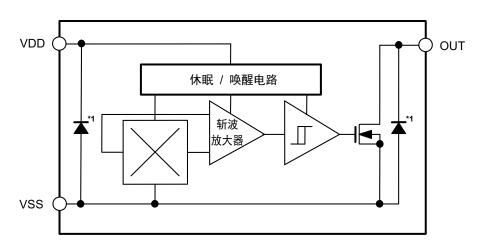
tcycle = 50.85 ms (I<sub>DD</sub> = 2.6 μA) (典型值)

● 电源电压范围: V<sub>DD</sub> = 2.7 V ~ 5.5 V
● 工作温度范围: Ta = -40°C ~ +85°C

• 无铅 (Sn 100%)、无卤素

\*1. 可以选项。

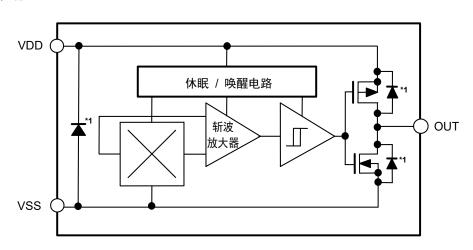
### ■ 用途


- 玩具、游戏机
- 家用电器产品
- 住宅设备
- 各种产业设备

# ■ 封装

- SOT-23-3
- SNT-4A

# ■ 框图

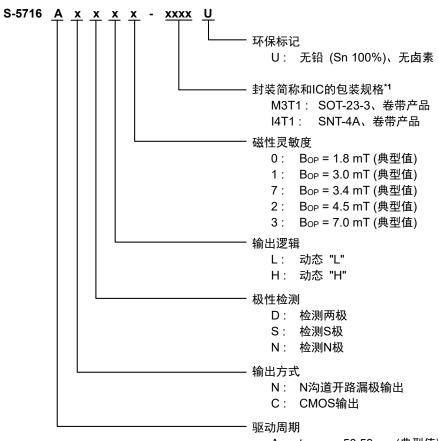

# 1. N沟道开路漏极输出产品



\*1. 寄生二极管

图1

# 2. CMOS输出产品




\*1. 寄生二极管

图2

# ■ 产品型号的构成

# 1. 产品名



A: tcycle = 50.50 ms (典型值) (检测两极产品) tcycle = 50.85 ms (典型值) (检测S极、N极产品)

\*1. 请参阅卷带图。

#### 2. 封装

表1 封装图纸号码

| 封装名      | 封装图面         | 卷带图面         | 带卷图面         | 焊盘图面         |
|----------|--------------|--------------|--------------|--------------|
| SOT-23-3 | MP003-C-P-SD | MP003-C-C-SD | MP003-Z-R-SD | _            |
| SNT-4A   | PF004-A-P-SD | PF004-A-C-SD | PF004-A-R-SD | PF004-A-L-SD |

# 3. 产品名目录

# 3.1 SOT-23-3

# 3.1.1 N沟道开路漏极输出产品

# 表2

| 产品名               | 驱动周期 (t <sub>CYCLE</sub> ) | 输出方式      | 极性检测 | 输出逻辑   | 磁性灵敏度 (Bop)  |
|-------------------|----------------------------|-----------|------|--------|--------------|
| S-5716ANDL0-M3T1U | 50.50 ms (典型值)             | N沟道开路漏极输出 | 检测两极 | 动态 "L" | 1.8 mT (典型值) |
| S-5716ANDL1-M3T1U | 50.50 ms (典型值)             | N沟道开路漏极输出 | 检测两极 | 动态 "L" | 3.0 mT (典型值) |
| S-5716ANDL2-M3T1U | 50.50 ms (典型值)             | N沟道开路漏极输出 | 检测两极 | 动态 "L" | 4.5 mT (典型值) |
| S-5716ANDL3-M3T1U | 50.50 ms (典型值)             | N沟道开路漏极输出 | 检测两极 | 动态 "L" | 7.0 mT (典型值) |
| S-5716ANSL0-M3T1U | 50.85 ms (典型值)             | N沟道开路漏极输出 | 检测S极 | 动态 "L" | 1.8 mT (典型值) |
| S-5716ANSL1-M3T1U | 50.85 ms (典型值)             | N沟道开路漏极输出 | 检测S极 | 动态 "L" | 3.0 mT (典型值) |
| S-5716ANSL2-M3T1U | 50.85 ms (典型值)             | N沟道开路漏极输出 | 检测S极 | 动态 "L" | 4.5 mT (典型值) |
| S-5716ANSL3-M3T1U | 50.85 ms (典型值)             | N沟道开路漏极输出 | 检测S极 | 动态 "L" | 7.0 mT (典型值) |
| S-5716ANNL1-M3T1U | 50.85 ms (典型值)             | N沟道开路漏极输出 | 检测N极 | 动态 "L" | 3.0 mT (典型值) |

**备注** 如果需要上述以外的产品时,请向代理商咨询。

# 3. 1. 2 CMOS输出产品

#### 表3

| 产品名               | 驱动周期 (tcycle)  | 输出方式   | 极性检测 | 输出逻辑   | 磁性灵敏度 (Bop)  |
|-------------------|----------------|--------|------|--------|--------------|
| S-5716ACDL0-M3T1U | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "L" | 1.8 mT (典型值) |
| S-5716ACDL1-M3T1U | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "L" | 3.0 mT (典型值) |
| S-5716ACDL7-M3T1U | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "L" | 3.4 mT (典型值) |
| S-5716ACDL2-M3T1U | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "L" | 4.5 mT (典型值) |
| S-5716ACDL3-M3T1U | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "L" | 7.0 mT (典型值) |
| S-5716ACDH0-M3T1U | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "H" | 1.8 mT (典型值) |
| S-5716ACDH1-M3T1U | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "H" | 3.0 mT (典型值) |
| S-5716ACDH2-M3T1U | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "H" | 4.5 mT (典型值) |
| S-5716ACSL0-M3T1U | 50.85 ms (典型值) | CMOS出力 | 检测S极 | 动态 "L" | 1.8 mT (典型值) |
| S-5716ACSL1-M3T1U | 50.85 ms (典型值) | CMOS出力 | 检测S极 | 动态 "L" | 3.0 mT (典型值) |
| S-5716ACSL2-M3T1U | 50.85 ms (典型值) | CMOS出力 | 检测S极 | 动态 "L" | 4.5 mT (典型值) |
| S-5716ACSL3-M3T1U | 50.85 ms (典型值) | CMOS出力 | 检测S极 | 动态 "L" | 7.0 mT (典型值) |

**备注** 如果需要上述以外的产品时,请向代理商咨询。

# 3. 2 SNT-4A

# 3. 2. 1 N沟道开路漏极输出产品

#### 表4

| 产品名               | 驱动周期 (tcycle)  | 输出方式      | 极性检测 | 输出逻辑   | 磁性灵敏度 (Bop)  |
|-------------------|----------------|-----------|------|--------|--------------|
| S-5716ANDL0-I4T1U | 50.50 ms (典型值) | N沟道开路漏极输出 | 检测两极 | 动态 "L" | 1.8 mT (典型值) |
| S-5716ANDL1-I4T1U | 50.50 ms (典型值) | N沟道开路漏极输出 | 检测两极 | 动态 "L" | 3.0 mT (典型值) |
| S-5716ANDL2-I4T1U | 50.50 ms (典型值) | N沟道开路漏极输出 | 检测两极 | 动态 "L" | 4.5 mT (典型值) |
| S-5716ANDH0-I4T1U | 50.50 ms (典型值) | N沟道开路漏极输出 | 检测两极 | 动态 "H" | 1.8 mT (典型值) |
| S-5716ANSL0-I4T1U | 50.85 ms (典型值) | N沟道开路漏极输出 | 检测S极 | 动态 "L" | 1.8 mT (典型值) |
| S-5716ANSL1-I4T1U | 50.85 ms (典型值) | N沟道开路漏极输出 | 检测S极 | 动态 "L" | 3.0 mT (典型值) |
| S-5716ANSL2-I4T1U | 50.85 ms (典型值) | N沟道开路漏极输出 | 检测S极 | 动态 "L" | 4.5 mT (典型值) |
| S-5716ANSL3-I4T1U | 50.85 ms (典型值) | N沟道开路漏极输出 | 检测S极 | 动态 "L" | 7.0 mT (典型值) |

**备注** 如果需要上述以外的产品时,请向代理商咨询。

# 3. 2. 2 CMOS输出产品

# 表5

| 产品名                | 驱动周期 (tcycle)  | 输出方式   | 极性检测 | 输出逻辑   | 磁性灵敏度 (Bop)  |
|--------------------|----------------|--------|------|--------|--------------|
| S-5716ACDL0- I4T1U | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "L" | 1.8 mT (典型值) |
| S-5716ACDL1-I4T1U  | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "L" | 3.0 mT (典型值) |
| S-5716ACDL2-I4T1U  | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "L" | 4.5 mT (典型值) |
| S-5716ACDL3-I4T1U  | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "L" | 7.0 mT (典型值) |
| S-5716ACDH0-I4T1U  | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "H" | 1.8 mT (典型值) |
| S-5716ACDH1-I4T1U  | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "H" | 3.0 mT (典型值) |
| S-5716ACDH2-I4T1U  | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "H" | 4.5 mT (典型值) |
| S-5716ACDH3-I4T1U  | 50.50 ms (典型值) | CMOS出力 | 检测两极 | 动态 "H" | 7.0 mT (典型值) |
| S-5716ACSL0-I4T1U  | 50.85 ms (典型值) | CMOS出力 | 检测S极 | 动态 "L" | 1.8 mT (典型值) |
| S-5716ACSL1-I4T1U  | 50.85 ms (典型值) | CMOS出力 | 检测S极 | 动态 "L" | 3.0 mT (典型值) |
| S-5716ACSL2-I4T1U  | 50.85 ms (典型值) | CMOS出力 | 检测S极 | 动态 "L" | 4.5 mT (典型值) |
| S-5716ACSH0-I4T1U  | 50.85 ms (典型值) | CMOS出力 | 检测S极 | 动态 "H" | 1.8 mT (典型值) |
| S-5716ACNL0-I4T1U  | 50.85 ms (典型值) | CMOS出力 | 检测N极 | 动态 "L" | 1.8 mT (典型值) |

**备注** 如果需要上述以外的产品时,请向代理商咨询。

# ■ 引脚排列图

# 1. SOT-23-3

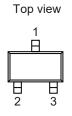



图3

# 表6

| 引脚号 | 符号  | 描述    |
|-----|-----|-------|
| 1   | VSS | GND端子 |
| 2   | VDD | 电源端子  |
| 3   | OUT | 输出端子  |

# 2. SNT-4A

Top view



图4

# 表7

| 引脚号 | 符号   | 描述    |
|-----|------|-------|
| 1   | VDD  | 电源端子  |
| 2   | VSS  | GND端子 |
| 3   | NC*1 | 无连接   |
| 4   | OUT  | 输出端子  |

\*1. NC表示处于电气开路状态。 所以,可以与VDD端子或VSS端子连接。

# ■ 绝对最大额定值

表8

(除特殊注明以外: Ta = +25°C)

|        |               |                  | (                                |    |
|--------|---------------|------------------|----------------------------------|----|
| 项目     |               | 符号               | 绝对最大额定值                          | 单位 |
| 电源电压   |               | $V_{DD}$         | $V_{SS} - 0.3 \sim V_{SS} + 7.0$ | V  |
| 输出电流   |               | Іоит             | ±2.0                             | mA |
| 給出由口   | N沟道开路漏极输出产品   | Vout             | $V_{SS} - 0.3 \sim V_{SS} + 7.0$ | V  |
| 制山巴压   | 输出电压 CMOS输出产品 |                  | $V_{SS} - 0.3 \sim V_{DD} + 0.3$ | V  |
| 工作环境温度 |               | Topr             | <b>−40 ~ +85</b>                 | °C |
| 保存温度   |               | T <sub>stg</sub> | <b>−40 ~ +125</b>                | °C |

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

# ■ 热敏电阻值

表9

| 项目       | 符号            | 条件       |         | 最小值 | 典型值 | 最大值 | 单位   |
|----------|---------------|----------|---------|-----|-----|-----|------|
|          |               |          | Board A | _   | 200 | I   | °C/W |
|          |               |          | Board B | -   | 165 | 1   | °C/W |
|          |               | SOT-23-3 | Board C | -   | _   | 1   | °C/W |
|          |               |          | Board D | -   | _   | 1   | °C/W |
| 结至环境热阻*1 |               |          | Board E | -   | _   | 1   | °C/W |
| 给主外境恐阻 · | $\theta_{JA}$ |          | Board A | _   | 300 | 1   | °C/W |
|          |               |          | Board B | -   | 242 | 1   | °C/W |
|          |               | SNT-4A   | Board C | -   | _   | 1   | °C/W |
|          |               |          | Board D | -   | _   | 1   | °C/W |
|          |               |          | Board E | -   | _   | _   | °C/W |

<sup>\*1.</sup> 测定环境: 遵循JEDEC STANDARD JESD51-2A标准

备注 关于详情,请参阅 "■ Power Dissipation" 和 "Test Board"。

# ■ 电气特性

# 1. 检测两极产品

# 1. 1 S-5716AxDxx

# 表10

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目     | 符号                    |                                            | 条件                       | 最小值                   | 典型值   | 最大值    | 单位 | 测定<br>电路 |
|--------|-----------------------|--------------------------------------------|--------------------------|-----------------------|-------|--------|----|----------|
| 电源电压   | $V_{DD}$              |                                            | _                        | 2.7                   | 5.0   | 5.5    | V  | _        |
| 消耗电流   | I <sub>DD</sub>       | 平均值                                        |                          | _                     | 4.0   | 8.0    | μΑ | 1        |
|        |                       | N沟道开路漏极<br>输出产品                            | 输出晶体管N沟道、<br>Іоит = 2 mA | _                     | ı     | 0.4    | V  | 2        |
| 输出电压   | V <sub>OUT</sub> CMOS | 输出晶体管N沟道、<br>Іоит = 2 mA                   | _                        | ı                     | 0.4   | V      | 2  |          |
|        |                       | 输出产品 输出晶体管P沟道、<br>I <sub>OUT</sub> = −2 mA |                          | V <sub>DD</sub> – 0.4 | -     | _      | ٧  | 3        |
| 泄漏电流   | ILEAK                 | N沟道开路漏极输<br>输出晶体管N沟道                       |                          | _                     | 1     | 1      | μΑ | 4        |
| 唤醒模式时间 | t <sub>AW</sub>       | _                                          |                          | -                     | 0.10  | -      | ms | _        |
| 休眠模式时间 | tsL                   | _                                          |                          | _                     | 50.40 | -      | ms | _        |
| 驱动周期   | tcycle                | t <sub>AW</sub> + t <sub>SL</sub>          |                          | _                     | 50.50 | 100.00 | ms | _        |

# 2. 检测S极、N极产品

#### 2.1 S-5716AxSxx、S-5716AxNxx

#### 表11

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目     | 符号                |                                   | 最小值                                   | 典型值                   | 最大值   | 单位     | 测定<br>电路 |   |
|--------|-------------------|-----------------------------------|---------------------------------------|-----------------------|-------|--------|----------|---|
| 电源电压   | $V_{DD}$          |                                   | _                                     | 2.7                   | 5.0   | 5.5    | V        | _ |
| 消耗电流   | I <sub>DD</sub>   | 平均值                               |                                       | _                     | 2.6   | 5.0    | μΑ       | 1 |
|        |                   | N沟道开路漏极<br>输出产品                   | 输出晶体管N沟道、<br>Іоит = 2 mA              | _                     | ı     | 0.4    | V        | 2 |
| 输出电压   | Vout              | CMOS                              | 输出晶体管N沟道、<br>Іоит = 2 mA              | _                     | ı     | 0.4    | V        | 2 |
|        |                   | 输出产品                              | 输出晶体管P沟道、<br>I <sub>OUT</sub> = -2 mA | V <sub>DD</sub> – 0.4 | -     | -      | V        | 3 |
| 泄漏电流   | I <sub>LEAK</sub> | N沟道开路漏极输<br>输出晶体管N沟道              |                                       | _                     | -     | 1      | μΑ       | 4 |
| 唤醒模式时间 | t <sub>AW</sub>   |                                   | _                                     |                       | 0.05  | -      | ms       | _ |
| 休眠模式时间 | tsL               | -                                 |                                       | _                     | 50.80 | -      | ms       | _ |
| 驱动周期   | tcycle            | t <sub>AW</sub> + t <sub>SL</sub> |                                       | _                     | 50.85 | 100.00 | ms       | _ |

# ■ 磁特性

# 1. 检测两极产品

# 1.1 B<sub>OP</sub> = 1.8 mT (典型值) 产品

#### 表12

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目 符号 条件          |    | 条件                | 最小值                                                      | 典型值  | 最大值  | 单位   | 测定电路 |   |
|-------------------|----|-------------------|----------------------------------------------------------|------|------|------|------|---|
| 工作点*1             | S极 | B <sub>OPS</sub>  | _                                                        | 0.9  | 1.8  | 2.7  | mT   | 5 |
| 工作出。              | N极 | Bopn              | _                                                        | -2.7 | -1.8 | -0.9 | mT   | 5 |
| 复位点* <sup>2</sup> | S极 | B <sub>RPS</sub>  | _                                                        | 0.3  | 1.2  | 2.2  | mT   | 5 |
| ▼                 | N极 | B <sub>RPN</sub>  | _                                                        | -2.2 | -1.2 | -0.3 | mT   | 5 |
| ·# 丘崎 南*3         | S极 | B <sub>HYSS</sub> | B <sub>HYSS</sub> = B <sub>OPS</sub> - B <sub>RPS</sub>  | _    | 0.6  | - 1  | mT   | 5 |
| 滞后幅度*3            | N极 | BHYSN             | B <sub>HYSN</sub> =  B <sub>OPN</sub> - B <sub>RPN</sub> | _    | 0.6  | 1    | mT   | 5 |

#### 1.2 Bop = 3.0 mT (典型值) 产品

#### 表13

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

|                    |    |                   | (                                                       | 13010 750 |      |      |    | , ,  |
|--------------------|----|-------------------|---------------------------------------------------------|-----------|------|------|----|------|
| 项目                 |    | 符号                | 条件                                                      | 最小值       | 典型值  | 最大值  | 单位 | 测定电路 |
| 工作点*1              | S极 | B <sub>OPS</sub>  | _                                                       | 1.4       | 3.0  | 4.0  | mT | 5    |
| 工作点。               | N极 | Bopn              | _                                                       | -4.0      | -3.0 | -1.4 | mT | 5    |
| 复位点* <sup>2</sup>  | S极 | B <sub>RPS</sub>  | _                                                       | 1.1       | 2.2  | 3.7  | mT | 5    |
| 复世点 -              | N极 | B <sub>RPN</sub>  | _                                                       | -3.7      | -2.2 | -1.1 | mT | 5    |
| 滞后幅度* <sup>3</sup> | S极 | B <sub>HYSS</sub> | B <sub>HYSS</sub> = B <sub>OPS</sub> - B <sub>RPS</sub> | ı         | 0.8  | 1    | mT | 5    |
| <b>冲</b> 归幅及 。     | N极 | BHYSN             | BHYSN = BOPN - BRPN                                     | -         | 0.8  | _    | mT | 5    |

# 1.3 Bop = 3.4 mT (典型值) 产品

# 表14

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

|                   |    |                   | ,                                                        |      |      |      |    |      |
|-------------------|----|-------------------|----------------------------------------------------------|------|------|------|----|------|
| 项目                |    | 符号                | 条件                                                       | 最小值  | 典型值  | 最大值  | 单位 | 测定电路 |
| 工作点*1             | S极 | Bops              | _                                                        | 2.0  | 3.4  | 5.6  | mT | 5    |
| 工作点               | N极 | Bopn              | _                                                        | -5.6 | -3.4 | -2.0 | mT | 5    |
| 复位点* <sup>2</sup> | S极 | B <sub>RPS</sub>  | _                                                        | 1.5  | 2.6  | 4.2  | mT | 5    |
| 复世点 -             | N极 | B <sub>RPN</sub>  | _                                                        | -4.2 | -2.6 | -1.5 | mT | 5    |
| ┃<br>滞后幅度*³       | S极 | B <sub>HYSS</sub> | B <sub>HYSS</sub> = B <sub>OPS</sub> - B <sub>RPS</sub>  | ı    | 0.8  | ı    | mT | 5    |
| <b>冲</b> 归幅及 *    | N极 | Bhysn             | B <sub>HYSN</sub> =  B <sub>OPN</sub> - B <sub>RPN</sub> | ı    | 0.8  | -    | mT | 5    |

# 1.4 Bop = 4.5 mT (典型值) 产品

# 表15

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

|                   |    |                   | (1070年)11                                               | 777 . Tu | 120 0, 1 | 0.0 1 | , 100 01) |      |
|-------------------|----|-------------------|---------------------------------------------------------|----------|----------|-------|-----------|------|
| 项目                |    | 符号                | 条件                                                      | 最小值      | 典型值      | 最大值   | 单位        | 测定电路 |
| 工作点*1             | S极 | Bops              | _                                                       | 2.5      | 4.5      | 6.0   | mT        | 5    |
| 工作出               | N极 | B <sub>OPN</sub>  | _                                                       | -6.0     | -4.5     | -2.5  | mT        | 5    |
| 复位点* <sup>2</sup> | S极 | B <sub>RPS</sub>  | _                                                       | 2.0      | 3.5      | 5.5   | mT        | 5    |
| 复世点 -             | N极 | B <sub>RPN</sub>  | _                                                       | -5.5     | -3.5     | -2.0  | mT        | 5    |
| <b>进</b> 丘幅       | S极 | BHYSS             | B <sub>HYSS</sub> = B <sub>OPS</sub> – B <sub>RPS</sub> | _        | 1.0      | ı     | mT        | 5    |
| 滞后幅度*3            | N极 | B <sub>HYSN</sub> | BHYSN =  BOPN - BRPN                                    | _        | 1.0      | _     | mT        | 5    |

#### 1.5 Bop = 7.0 mT (典型值) 产品

# 表16

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目                |    | 符号                | 条件                                                      | 最小值  | 典型值  | 最大值  | 单位 | 测定电路 |
|-------------------|----|-------------------|---------------------------------------------------------|------|------|------|----|------|
| 工作点*1             | S极 | B <sub>OPS</sub>  | _                                                       | 5.0  | 7.0  | 8.5  | mT | 5    |
| 工作出               | N极 | BOPN              | ı                                                       | -8.5 | -7.0 | -5.0 | mT | 5    |
| 复位点* <sup>2</sup> | S极 | B <sub>RPS</sub>  | _                                                       | 3.7  | 5.2  | 7.2  | mT | 5    |
| 友世品               | N极 | BRPN              | ı                                                       | -7.2 | -5.2 | -3.7 | mΤ | 5    |
| <b>洲丘崎南*3</b>     | S极 | B <sub>HYSS</sub> | B <sub>HYSS</sub> = B <sub>OPS</sub> - B <sub>RPS</sub> | -    | 1.8  | -    | mT | 5    |
| 滞后幅度*3            | N极 | B <sub>HYSN</sub> | $B_{HYSN} =  B_{OPN} - B_{RPN} $                        | _    | 1.8  | _    | mT | 5    |

# 2. 检测S极产品

#### 2.1 Bop = 1.8 mT (典型值) 产品

# 表17

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目     |    | 符号                 | 条件                                                      | 最小值 | 典型值 | 最大值 | 单位 | 测定电路 |
|--------|----|--------------------|---------------------------------------------------------|-----|-----|-----|----|------|
| 工作点*1  | S极 | Bops               | _                                                       | 0.9 | 1.8 | 2.7 | mT | 5    |
| 复位点*2  | S极 | B <sub>RPS</sub>   | _                                                       | 0.3 | 1.2 | 2.2 | mT | 5    |
| 滞后幅度*3 | S极 | B <sub>H</sub> YSS | B <sub>HYSS</sub> = B <sub>OPS</sub> - B <sub>RPS</sub> | ı   | 0.6 | 1   | mΤ | 5    |

# 2.2 Bop = 3.0 mT (典型值) 产品

#### 表18

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目     |    | 符号                 | 条件                                                      | 最小值 | 典型值 | 最大值 | 单位 | 测定电路 |
|--------|----|--------------------|---------------------------------------------------------|-----|-----|-----|----|------|
| 工作点*1  | S极 | B <sub>OPS</sub>   | _                                                       | 1.4 | 3.0 | 4.0 | mT | 5    |
| 复位点*2  | S极 | B <sub>RPS</sub>   | _                                                       | 1.1 | 2.2 | 3.7 | mT | 5    |
| 滞后幅度*3 | S极 | B <sub>H</sub> yss | B <sub>HYSS</sub> = B <sub>OPS</sub> – B <sub>RPS</sub> | _   | 0.8 | 1   | mT | 5    |

#### 2.3 B<sub>OP</sub> = 3.4 mT (典型值) 产品

#### 表19

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

|        |    |                   | (                                                       | 1 2 1 1 1 1 1 |     | ,   |    | ,,   |
|--------|----|-------------------|---------------------------------------------------------|---------------|-----|-----|----|------|
| 项目     |    | 符号                | 条件                                                      | 最小值           | 典型值 | 最大值 | 单位 | 测定电路 |
| 工作点*1  | S极 | Bops              | _                                                       | 2.0           | 3.4 | 5.6 | mT | 5    |
| 复位点*2  | S极 | B <sub>RPS</sub>  | _                                                       | 1.5           | 2.6 | 4.2 | mT | 5    |
| 滞后幅度*3 | S极 | B <sub>HYSS</sub> | B <sub>HYSS</sub> = B <sub>OPS</sub> - B <sub>RPS</sub> | 1             | 8.0 | 1   | mT | 5    |

#### 2.4 Bop = 4.5 mT (典型值) 产品

#### 表20

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目     |    | 符号                | 条件                                                      | 最小值 | 典型值 | 最大值 | 单位 | 测定电路 |
|--------|----|-------------------|---------------------------------------------------------|-----|-----|-----|----|------|
| 工作点*1  | S极 | B <sub>OPS</sub>  | _                                                       | 2.5 | 4.5 | 6.0 | mT | 5    |
| 复位点*2  | S极 | B <sub>RPS</sub>  | -                                                       | 2.0 | 3.5 | 5.5 | mT | 5    |
| 滞后幅度*3 | S极 | B <sub>HYSS</sub> | B <sub>HYSS</sub> = B <sub>OPS</sub> - B <sub>RPS</sub> | -   | 1.0 | -   | mT | 5    |

#### 2.5 Bop = 7.0 mT (典型值) 产品

#### 表21

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

|        |    |                   |                                                         |     |     | ,   |    | , ,  |
|--------|----|-------------------|---------------------------------------------------------|-----|-----|-----|----|------|
| 项目     |    | 符号                | 条件                                                      | 最小值 | 典型值 | 最大值 | 单位 | 测定电路 |
| 工作点*1  | S极 | Bops              | _                                                       | 5.0 | 7.0 | 8.5 | mT | 5    |
| 复位点*2  | S极 | B <sub>RPS</sub>  | _                                                       | 3.7 | 5.2 | 7.2 | mT | 5    |
| 滞后幅度*3 | S极 | B <sub>HYSS</sub> | B <sub>HYSS</sub> = B <sub>OPS</sub> – B <sub>RPS</sub> | -   | 1.8 | ı   | mT | 5    |

#### 3. 检测N极产品

#### 3.1 Bop = 1.8 mT (典型值) 产品

#### 表22

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目     |    | 符号                | 条件                   | 最小值  | 典型值  | 最大值  | 单位 | 测定电路 |
|--------|----|-------------------|----------------------|------|------|------|----|------|
| 工作点*1  | N极 | Bopn              | _                    | -2.7 | -1.8 | -0.9 | mT | 5    |
| 复位点*2  | N极 | B <sub>RPN</sub>  | _                    | -2.2 | -1.2 | -0.3 | mT | 5    |
| 滞后幅度*3 | N极 | B <sub>HYSN</sub> | BHYSN =  BOPN - BRPN | -    | 0.6  | -    | mT | 5    |

### 3.2 B<sub>OP</sub> = 3.0 mT (典型值) 产品

#### 表23

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目     |    | 符号               | 条件                   | 最小值  | 典型值  | 最大值  | 单位 | 测定电路 |
|--------|----|------------------|----------------------|------|------|------|----|------|
| 工作点*1  | N极 | Bopn             | _                    | -4.0 | -3.0 | -1.4 | mT | 5    |
| 复位点*2  | N极 | B <sub>RPN</sub> | _                    | -3.7 | -2.2 | -1.1 | mT | 5    |
| 滞后幅度*3 | N极 | BHYSN            | BHYSN =  BOPN - BRPN | ı    | 0.8  | I    | mT | 5    |

#### 3.3 Bop = 3.4 mT (典型值) 产品

#### 表24

(除特殊注明以外: Ta = +25°C, VDD = 5.0 V, Vss = 0 V)

| 项目     |    | 符号                | 条件                   | 最小值  | 典型值  | 最大值  | 单位 | 测定电路 |
|--------|----|-------------------|----------------------|------|------|------|----|------|
| 工作点*1  | N极 | B <sub>OPN</sub>  | _                    | -5.6 | -3.4 | -2.0 | mT | 5    |
| 复位点*2  | N极 | B <sub>RPN</sub>  | _                    | -4.2 | -2.6 | -1.5 | mT | 5    |
| 滞后幅度*3 | N极 | B <sub>HYSN</sub> | BHYSN =  BOPN - BRPN | 1    | 0.8  | 1    | mT | 5    |

#### 3.4 Bop = 4.5 mT (典型值) 产品

#### 表25

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目     |    | 符号                | 条件                   | 最小值  | 典型值  | 最大值  | 单位 | 测定电路 |
|--------|----|-------------------|----------------------|------|------|------|----|------|
| 工作点*1  | N极 | Bopn              | _                    | -6.0 | -4.5 | -2.5 | mT | 5    |
| 复位点*2  | N极 | B <sub>RPN</sub>  | _                    | -5.5 | -3.5 | -2.0 | mT | 5    |
| 滞后幅度*3 | N极 | B <sub>HYSN</sub> | BHYSN =  BOPN - BRPN | _    | 1.0  | -    | mT | 5    |

#### 3.5 Bop = 7.0 mT (典型值) 产品

#### 表26

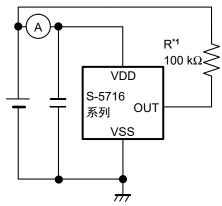
(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目     |    | 符号                | 条件                                                       | 最小值  | 典型值  | 最大值  | 单位 | 测定电路 |
|--------|----|-------------------|----------------------------------------------------------|------|------|------|----|------|
| 工作点*1  | N极 | Bopn              | _                                                        | -8.5 | -7.0 | -5.0 | mT | 5    |
| 复位点*2  | N极 | B <sub>RPN</sub>  | _                                                        | -7.2 | -5.2 | -3.7 | mT | 5    |
| 滞后幅度*3 | N极 | B <sub>HYSN</sub> | B <sub>HYSN</sub> =  B <sub>OPN</sub> - B <sub>RPN</sub> | ı    | 1.8  | ı    | mT | 5    |

\*1. B<sub>OPN</sub>, B<sub>OPS</sub>: 工作点

指本IC所接受的由磁石 (N极或S极) 产生的磁束密度增强 (靠近磁石) 时,输出电压 (V<sub>OUT</sub>) 切换时的磁束密度的值。即使将磁束密度增强为比B<sub>OPN</sub>, B<sub>OPS</sub>强, V<sub>OUT</sub>也会维持现状。

\*2. BRPN, BRPS: 复位点


指本IC所接受的由磁石 (N极或S极) 产生的磁束密度减弱 (远离磁石) 时,输出电压 (Vоит) 切换时的磁束密度的值。即使将磁束密度减弱为比ВRPN, BRPS弱,Vоит也会维持现状。

\*3. BHYSN, BHYSS: 滞后幅度

BHYSN、BHYSS分别表示BOPN与BRPN, BOPS与BRPS之间的磁束密度的差值。

备注 按照1 mT = 10 Gauss的公式换算磁束密度的单位mT。

# ■ 测定电路



\*1. CMOS输出产品,不需要电阻 (R)。

图5 测定电路1

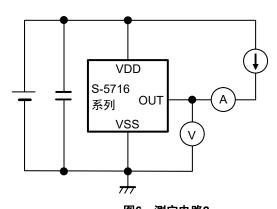
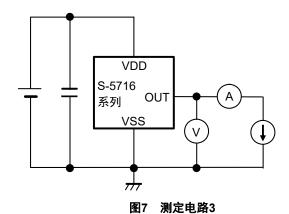
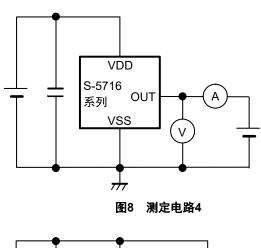
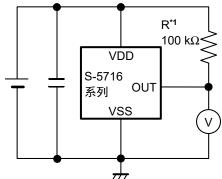
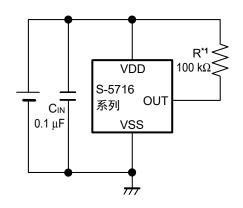






图6 测定电路2








\*1. CMOS输出产品,不需要电阻 (R)。

图9 测定电路5

# ■ 标准电路



\*1. CMOS输出产品,不需要电阻 (R)。

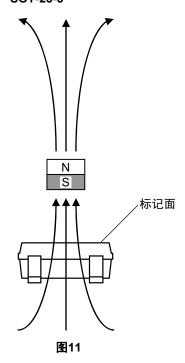
图10

注意 上述连接图以及参数并不作为保证电路工作的依据。实际的应用电路请在进行充分的实测基础上设定参数。

# ■ 工作说明

#### 1. 施加磁束方向

本IC可针对标记面检测出垂直方向的磁束密度。


检测两极产品时,将S极或N极接近标记面,输出电压 (Vоит) 就会切换。

检测S极产品时,将S极接近标记面, VouT就会切换。

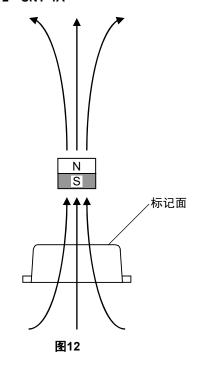

检测N极产品时,将N极接近标记面, Vour就会切换。

图11、图12表示施加磁束的方向。

#### 1. 1 SOT-23-3



#### 1. 2 SNT-4A



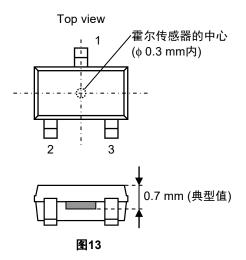

# 2. 霍尔传感器位置

图13、图14表示霍尔传感器的位置。

霍尔传感器的中心位置如下图所示,处于封装中央的标有圆形标记的范围内。

另外, 还标示出从封装的标记面到芯片表面的距离 (典型值)。

# 2.1 SOT-23-3



# 2. 2 SNT-4A

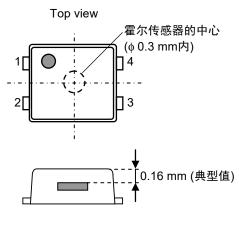
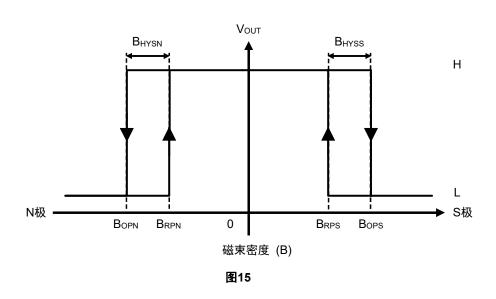



图14


#### 3. 基本工作

本IC可根据磁石等所产生的磁束密度 (N极或S极) 的强弱来切换输出电压 (Vout) 的电位。以下说明在输出逻辑为动态 "L" 时的工作。

#### 3.1 检测两极产品

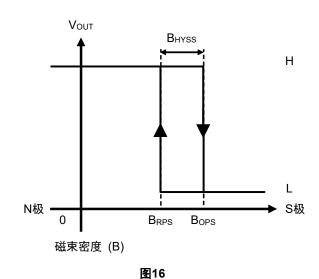

将磁石的S极或N极靠近本IC的标记面,针对本IC的标记面,当垂直方向的磁束密度超过工作点 (Bopn或Bops)时,Vouт从 "H" 切换为 "L"。另外,将磁石的S极或N极远离本IC的标记面,当磁束密度低于复位点 (Brpn或Brps) 时,Vouт从 "L" 切换为 "H"。

图15表示磁束密度与Vour之间的关系。



#### 3.2 检测S极产品

将磁石的S极靠近本IC的标记面,针对本IC的标记面,当垂直方向的磁束密度超过Bops时,Vout从 "H" 切换为 "L"。另外,将磁石的S极远离本IC的标记面,当磁束密度低于Brps时,Vout从 "L" 切换为 "H"。 **图16**表示磁束密度与Vout之间的关系。

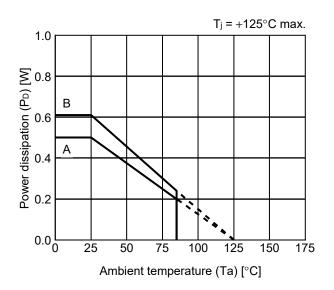


# 3.3 检测N极产品

将磁石的N极靠近本IC的标记面,针对本IC的标记面,当垂直方向的磁束密度超过Bopn时,Vout从 "H" 切换为 "L"。另外,将磁石的N极远离本IC的标记面,当磁束密度低于Brpn时,Vout从 "L" 切换为 "H"。 图17表示磁束密度与Vout之间的关系。

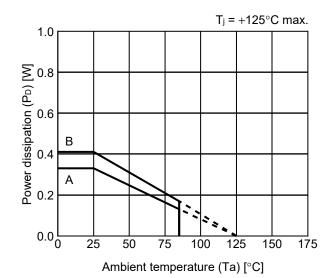



图17


# ■ 注意事项

- 如果将电源设置为高阻抗状态,有可能因击穿电流等而导致电源电压的下降,从而引发IC的误工作。因此,为降低阻抗,要充分注意接线方式。
- 请注意,如果电源电压发生急剧的变化,有可能导致IC的误工作。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 若对此IC施加较大的应力,则可能导致磁特性发生改变。因此,在安装到基板上时,请注意基板不能出现弯曲以及变形,在使用过程中也要注意不要对此IC施加较大的应力。
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因,使包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

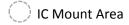
S-5716系列


# **■** Power Dissipation

# SOT-23-3



| Board | Power Dissipation (P <sub>D</sub> ) |
|-------|-------------------------------------|
| Α     | 0.50 W                              |
| В     | 0.61 W                              |
| С     | _                                   |
| D     | _                                   |
| Е     | _                                   |


# SNT-4A



| Board | Power Dissipation (P <sub>D</sub> ) |  |
|-------|-------------------------------------|--|
| А     | 0.33 W                              |  |
| В     | 0.41 W                              |  |
| С     | _                                   |  |
| D     | _                                   |  |
| F     | _                                   |  |

# **SOT-23-3/3S/5/6** Test Board

# (1) Board A

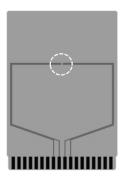




| Item                        |   | Specification                               |
|-----------------------------|---|---------------------------------------------|
| Size [mm]                   |   | 114.3 x 76.2 x t1.6                         |
| Material                    |   | FR-4                                        |
| Number of copper foil layer |   | 2                                           |
|                             | 1 | Land pattern and wiring for testing: t0.070 |
| Coppor foil lover [mm]      | 2 | -                                           |
| Copper foil layer [mm]      | 3 | -                                           |
|                             | 4 | 74.2 x 74.2 x t0.070                        |
| Thermal via                 |   | -                                           |

# (2) Board B




| Item                        |   | Specification                               |  |  |
|-----------------------------|---|---------------------------------------------|--|--|
| Size [mm]                   |   | 114.3 x 76.2 x t1.6                         |  |  |
| Material                    |   | FR-4                                        |  |  |
| Number of copper foil layer |   | 4                                           |  |  |
|                             | 1 | Land pattern and wiring for testing: t0.070 |  |  |
| Copper foil layer [mm]      | 2 | 74.2 x 74.2 x t0.035                        |  |  |
| Copper foil layer [mm]      | 3 | 74.2 x 74.2 x t0.035                        |  |  |
|                             | 4 | 74.2 x 74.2 x t0.070                        |  |  |
| Thermal via                 |   | -                                           |  |  |

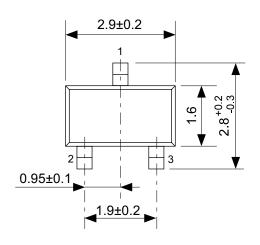
No. SOT23x-A-Board-SD-2.0

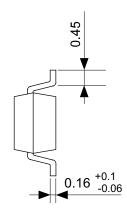
# **SNT-4A Test Board**

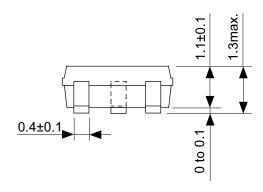
# (1) Board A





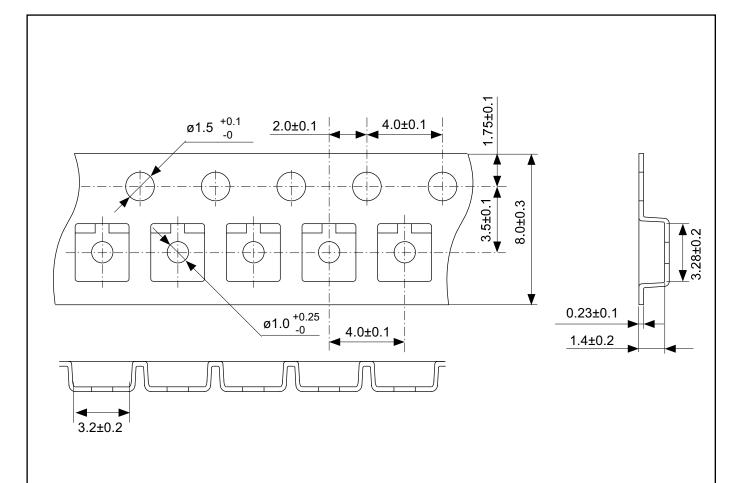

| Item                        |   | Specification                               |
|-----------------------------|---|---------------------------------------------|
| Size [mm]                   |   | 114.3 x 76.2 x t1.6                         |
| Material                    |   | FR-4                                        |
| Number of copper foil layer |   | 2                                           |
|                             | 1 | Land pattern and wiring for testing: t0.070 |
| Coppor foil layer [mm]      | 2 | -                                           |
| Copper foil layer [mm]      | 3 | -                                           |
|                             | 4 | 74.2 x 74.2 x t0.070                        |
| Thermal via                 |   | -                                           |

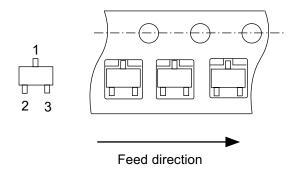

# (2) Board B




| Item                        |   | Specification                               |
|-----------------------------|---|---------------------------------------------|
| Size [mm]                   |   | 114.3 x 76.2 x t1.6                         |
| Material                    |   | FR-4                                        |
| Number of copper foil layer |   | 4                                           |
|                             | 1 | Land pattern and wiring for testing: t0.070 |
| Connor foil lover [mm]      | 2 | 74.2 x 74.2 x t0.035                        |
| Copper foil layer [mm]      | 3 | 74.2 x 74.2 x t0.035                        |
|                             | 4 | 74.2 x 74.2 x t0.070                        |
| Thermal via                 |   | -                                           |

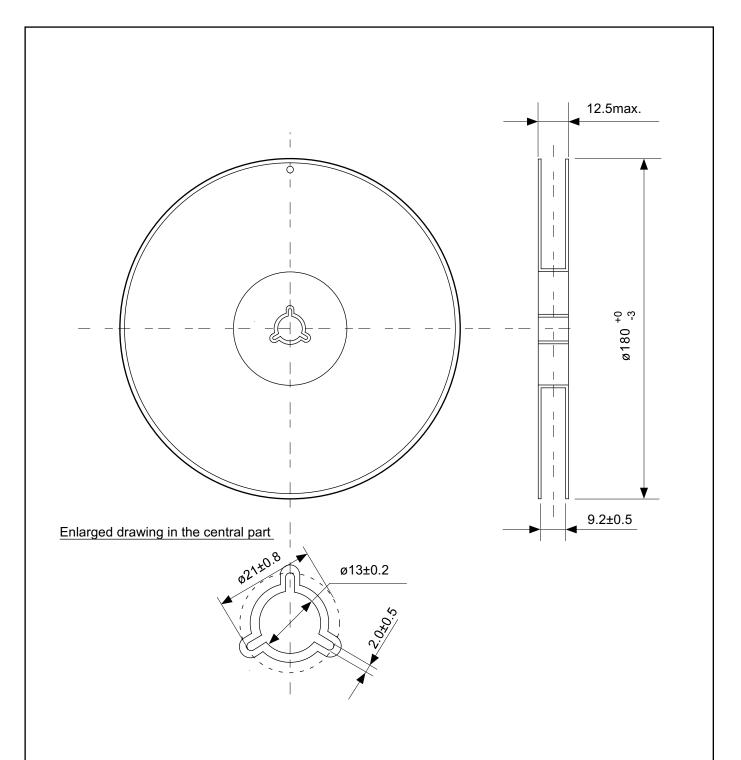
No. SNT4A-A-Board-SD-1.0



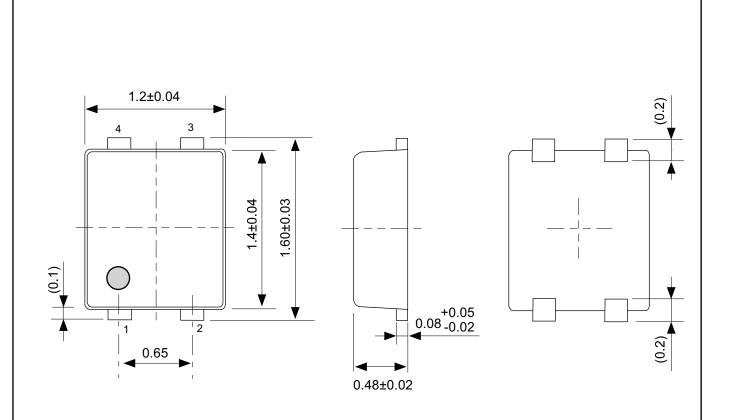


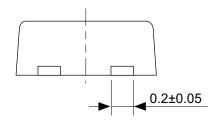

No. MP003-C-P-SD-1.1


| TITLE       | SOT233-C-PKG Dimensions |  |  |  |
|-------------|-------------------------|--|--|--|
| No.         | MP003-C-P-SD-1.1        |  |  |  |
| ANGLE       | <b>\$</b>               |  |  |  |
| UNIT        | mm                      |  |  |  |
|             |                         |  |  |  |
|             |                         |  |  |  |
|             |                         |  |  |  |
| ABLIC Inc.  |                         |  |  |  |
| ADLIC IIIC. |                         |  |  |  |



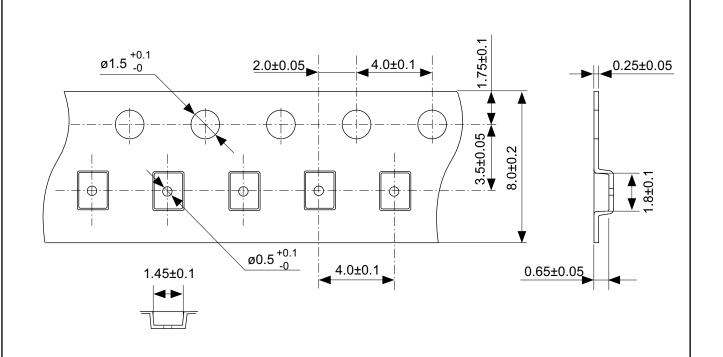


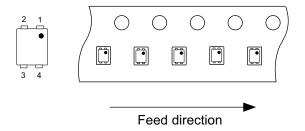

# No. MP003-C-C-SD-2.0


| SOT233-C-Carrier Tape |  |  |  |
|-----------------------|--|--|--|
| MP003-C-C-SD-2.0      |  |  |  |
|                       |  |  |  |
| mm                    |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |
| ABLIC Inc.            |  |  |  |
|                       |  |  |  |



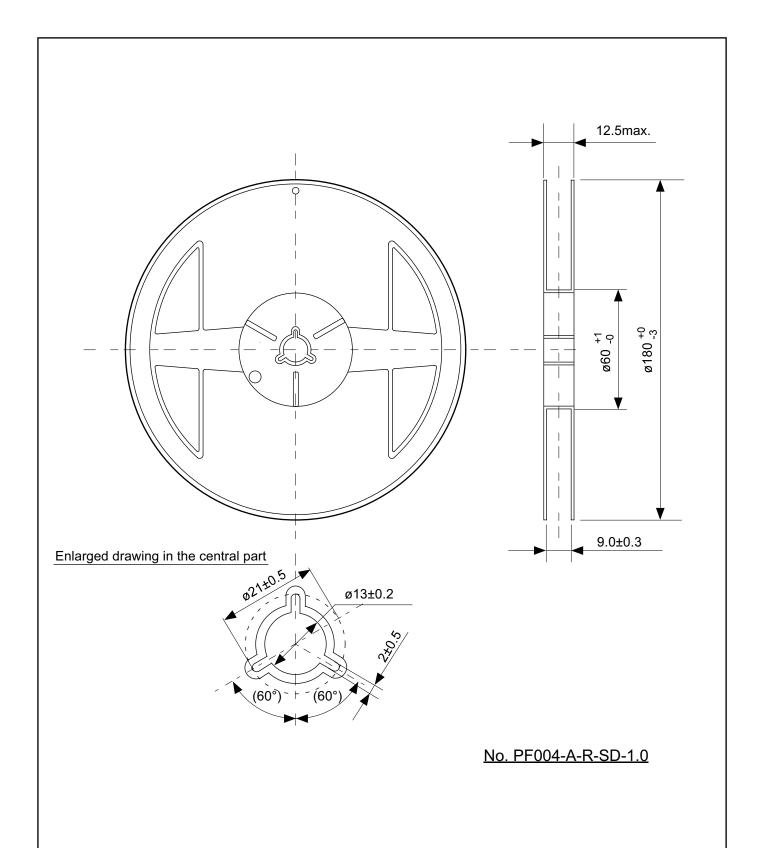
# No. MP003-Z-R-SD-1.0


| TITLE      | SOT233-C-Reel    |      |       |  |
|------------|------------------|------|-------|--|
| No.        | MP003-Z-R-SD-1.0 |      |       |  |
| ANGLE      |                  | QTY. | 3,000 |  |
| UNIT       | mm               |      |       |  |
|            |                  |      |       |  |
|            |                  |      |       |  |
|            |                  |      |       |  |
| ABLIC Inc. |                  |      |       |  |

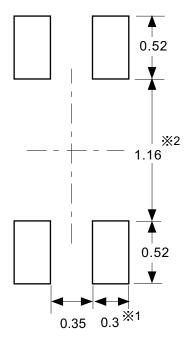





# No. PF004-A-P-SD-6.0


| TITLE      | SNT-4A-A-PKG Dimensions |  |  |
|------------|-------------------------|--|--|
| No.        | PF004-A-P-SD-6.0        |  |  |
| ANGLE      | <b>\$</b> = 3           |  |  |
| UNIT       | mm                      |  |  |
|            |                         |  |  |
|            |                         |  |  |
|            |                         |  |  |
| ABLIC Inc. |                         |  |  |






# No. PF004-A-C-SD-2.0

| TITLE      | SNT-4A-A-Carrier Tape |  |  |
|------------|-----------------------|--|--|
| No.        | PF004-A-C-SD-2.0      |  |  |
| ANGLE      |                       |  |  |
| UNIT       | mm                    |  |  |
|            |                       |  |  |
|            |                       |  |  |
|            |                       |  |  |
| ABLIC Inc. |                       |  |  |



| TITLE      | SNT-4A-A-Reel    |      |       |  |
|------------|------------------|------|-------|--|
| No.        | PF004-A-R-SD-1.0 |      |       |  |
| ANGLE      |                  | QTY. | 5,000 |  |
| UNIT       | mm               |      |       |  |
|            |                  |      |       |  |
|            |                  |      |       |  |
|            |                  |      |       |  |
| ABLIC Inc. |                  |      |       |  |



- %1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。 %2. パッケージ中央にランドパターンを広げないでください (1.10 mm ~ 1.20 mm)。
- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
  - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm 以下にしてください。
  - 3. マスク開口サイズと開口位置はランドパターンと合わせてください。
  - 4. 詳細は "SNTパッケージ活用の手引き"を参照してください。
- ※1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
- ※2. Do not widen the land pattern to the center of the package (1.10 mm to 1.20 mm).
- Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
  - 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
  - 3. Match the mask aperture size and aperture position with the land pattern.
  - 4. Refer to "SNT Package User's Guide" for details.
- ※1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- ※2. 请勿向封装中间扩展焊盘模式 (1.10 mm ~ 1.20 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
  - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在 0.03 mm 以下。
  - 3. 钢网的开口尺寸和开口位置请与焊盘模式对齐。
  - 4. 详细内容请参阅 "SNT 封装的应用指南"。

No. PF004-A-L-SD-4.1

| TITLE      | SNT-4A-A<br>-Land Recommendation |  |  |
|------------|----------------------------------|--|--|
| No.        | PF004-A-L-SD-4.1                 |  |  |
| ANGLE      |                                  |  |  |
| UNIT       | mm                               |  |  |
|            |                                  |  |  |
|            |                                  |  |  |
|            |                                  |  |  |
| ABLIC Inc. |                                  |  |  |

# 免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可能未经预告而更改。
- 2. 本资料记载的电路示例和使用方法仅供参考,并非保证批量生产的设计。使用本资料的信息后,发生并非因本资料记载的产品(以下称本产品)而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承担任何责任。
- 3. 因本资料记载错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本产品并非是设计用于可能对生命、人体造成影响的设备或装置的部件,也非是设计用于可能对财产造成损害的设备或装置的部件(医疗设备、防灾设备、安全防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。请勿将本产品用于上述设备或装置的部件。本公司事先明确标示的车载用途例外。作为上述设备或装置的部件使用本产品时,或本公司事先明确标示的用途以外使用本产品时,所导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。为了防止因本产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。本资料记载的内容并非是对本公司或第三方的知识产权、 其它权利的实施及使用的承诺或保证。严禁在未经本公司许可的情况下转载、复制或向第三方公开本资料的一部分或全 部。
- 14. 有关本资料的详细内容等如有不明之处,请向代理商咨询。
- 15. 本免责事项以日语版为正本。即使有英语版或中文版的翻译件, 仍以日语版的正本为准。

2.4-2019.07

