S-8229A系列

www.ablic.com 电池监视用IC

© ABLIC Inc., 2012-2021 Rev.2.0_01

S-8229A系列是使用CMOS技术开发的电池监视用IC。与以往的CMOS电压检测器相比,工作电压最高可达到24 V,最适用于需要耐高压的应用电路。

因可检测三个电压值, 所以可分阶段地确认电压的状况。

■ 特点

◆ 检测电压精度: ±1.0%

滞后特性: VHYS3 = 0 mV, 50 mV, 300 mV, 400 mV, 500 mV
 消耗电流: IDD1 = 9.0 μA (最大值) (-VDETtotal* ≥ 42 V)

I_{DD1} = 11.0 μA (最大值) (–V_{DETtotal}*1<42 V)

休眠时: I_{DD2} = 0.1 μA (最大值)

● 工作电压范围: V_{DD} = 3.6 V ~ 24 V

-VDET3(S) = 7.5 V ~ 21.5 V (进阶单位为0.1 V)

• 输出方式: N沟道开路漏极输出

• 输出逻辑^{*2}: 完全充电时全输出为ON、完全充电时全输出为OFF

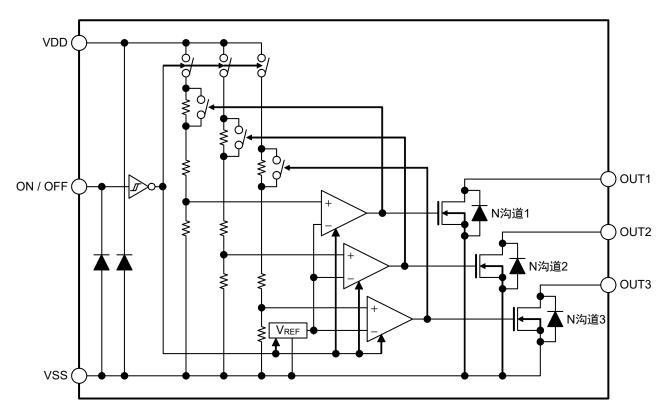
 • 工作温度范围:
 Ta = -40°C ~ +85°C

• 无铅 (Sn 100%)、无卤素

*1. -VDETtotal: 检测电压的合计值

 $-V_{DETtotal} = -V_{DET1(S)} + -V_{DET2(S)} + -V_{DET3(S)}$

*2. 完全充电时全输出为ON:输入电压分别在三个检测电压以上时,VouT1 = VouT2 = VouT3 = Vss电位。 完全充电时全输出为OFF:输入电压分别在三个检测电压以上时,VouT1 = VouT2 = VouT3 = "High-Z"。

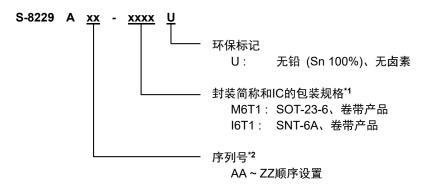

■ 用途

• 锂离子可充电电池组

■ 封装

- SOT-23-6
- SNT-6A

■ 框图



备注 图中所示的二极管为寄生二极管

图1

■ 产品型号名的构成

1. 产品名

- *1. 请参阅卷带图。
- *2. 请参阅 "3. 产品名目录"。

2. 封装

表1 封装图纸号码

封装名	外形尺寸图	卷带图	带卷图	焊盘图
SOT-23-6	MP006-A-P-SD	MP006-A-C-SD	MP006-A-R-SD	_
SNT-6A	PG006-A-P-SD	PG006-A-C-SD	PG006-A-R-SD	PG006-A-L-SD

3. 产品名目录

3.1 SOT-23-6

表2

产品名	检测电压1 [-V _{DET1(S)}]	检测电压2 [-V _{DET2(S)}]	检测电压3	滞后幅度1 [V _{HYS1(S)}]	滞后幅度2 [V _{HYS2(S)}]	滞后幅度3 [V _{HYS3(S)}]	出力逻辑*1
S-8229AAA-M6T1U	19.400 V	18.100 V	15.300 V	0 V	0 V	0 V	完全充电时全输出为ON
S-8229AAB-M6T1U	19.400 V	18.100 V	15.300 V	0.500 V	0.500 V	0.500 V	完全充电时全输出为ON
S-8229AAC-M6T1U	19.500 V	18.000 V	15.500 V	0.050 V	0.050 V	0.050 V	完全充电时全输出为ON
S-8229AAG-M6T1U	15.600 V	14.800 V	13.600 V	0.500 V	0.500 V	0.500 V	完全充电时全输出为ON
S-8229AAH-M6T1U	20.000 V	18.500 V	16.000 V	0.500 V	0.500 V	0.500 V	完全充电时全输出为ON
S-8229AAI-M6T1U	20.000 V	18.500 V	16.000 V	0.050 V	0.050 V	0.050 V	完全充电时全输出为ON
S-8229AAJ-M6T1U	15.100 V	14.300 V	13.100 V	0.500 V	0.500 V	0.500 V	完全充电时全输出为ON
S-8229AAK-M6T1U	15.600 V	14.400 V	12.400 V	0 V	0 V	0 V	完全充电时全输出为ON
S-8229AAL-M6T1U	19.000 V	17.500 V	15.000 V	0 V	0 V	0 V	完全充电时全输出为ON
S-8229AAM-M6T1U	19.200 V	17.900 V	12.500 V	0 V	0 V	0 V	完全充电时全输出为ON
S-8229AAN-M6T1U	11.500 V	10.700 V	7.500 V	0 V	0 V	0 V	完全充电时全输出为ON
S-8229AAO-M6T1U	19.900 V	19.000 V	18.100 V	0 V	0 V	0 V	完全充电时全输出为ON

^{*1.} 完全充电时全输出为ON:输入电压分别在三个检测电压以上时,VouT1 = VouT2 = VouT3 = Vss电位。 完全充电时全输出为OFF:输入电压分别在三个检测电压以上时,VouT1 = VouT2 = VouT3 = "High-Z"。

备注 如果需要上述以外的产品时,请向代理商咨询。

3. 2 SNT-6A

表3

产品名	检测电压1	检测电压2	检测电压3	滞后幅度1	滞后幅度2	滞后幅度3	出力逻辑*1
	[-V _{DET1(S)}]	[-V _{DET2(S)}]	[-V _{DET3(S)}]	[V _{HYS1(S)}]	[V _{HYS2(S)}]	[V _{HYS3(S)}]	田力是棋
S-8229AAF-I6T1U	18.000 V	15.000 V	21.500 V	0.050 V	0.050 V	0.050 V	完全充电时全输出为ON

^{*1.} 完全充电时全输出为ON:输入电压分别在三个检测电压以上时, VouT1 = VouT2 = VouT3 = Vss电位。 完全充电时全输出为OFF:输入电压分别在三个检测电压以上时, VouT1 = VouT2 = VouT3 = "High-Z"。

备注 如果需要上述以外的产品时,请向代理商咨询。

■ 引脚排列图

1. SOT-23-6

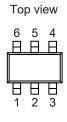


图2

表4

引脚号	符号	描述
1	OUT1	检测电压输出端子1
2	OUT2	检测电压输出端子2
3	OUT3	检测电压输出端子3
4	VSS	接地 (GND) 端子
5	VDD	电压输入端子
6	ON / OFF	ON / OFF端子

2. SNT-6A

图3

引脚号	符号	描述
1	OUT3	检测电压输出端子3
2	OUT2	检测电压输出端子2
3	OUT1	检测电压输出端子1
4	ON / OFF	ON / OFF端子
5	VDD	电压输入端子
6	VSS	接地 (GND) 端子

表5

■ 绝对最大额定值

表6

(除特殊注明以外: Ta = +25°C)

		(11111111111111111111111111111111111111			
项目	项目 符号		单位		
输入电压	V_{DD}	$V_{SS} - 0.3 \sim V_{SS} + 26$	V		
和八屯压	V _{ON / OFF}	$V_{SS} - 0.3 \sim V_{SS} + 26$	V		
输出电压n	V _{OUTn}	$V_{SS} - 0.3 \sim V_{SS} + 26$	V		
工作环境温度	T _{opr}	−40 ~ +85	°C		
保存温度	T _{stg}	−40 ~ +125	°C		

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性的损伤。

备注 n=1~3

■ 热敏电阻值

表7

·Ų i									
项目	符号	条件	‡	最小值	典型值	最大值	单位		
结至环境热阻*1			Board A	-	159	_	°C/W		
			Board B	1	124	_	°C/W		
		SOT-23-6	Board C	1	_	_	°C/W		
	θЈΑ		Board D	_	_	_	°C/W		
			Board E	_	_	_	°C/W		
41 主 4 克 然 性			Board A	_	224	_	°C/W		
			Board B	_	176	_	°C/W		
		SNT-6A	Board C	_	_	_	°C/W		
			Board D	1	_	_	°C/W		
			Board E	_	_	_	°C/W		

^{*1.} 测定环境:遵循 JEDEC STANDARD JESD51-2A 标准

备注 关于详情,请参阅 "■ Power Dissipation" 和 "Test Board"。

■ 电气特性

表8

(除特殊注明以外: Ta = +25°C)

项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
检测电压n*1	-V _{DETn}		$-V_{DETn(S)} \\ \times 0.99$	-V _{DETn(S)}	$-V_{DETn(S)} \times 1.01$	٧	1
滞后幅度n ^{*2}	VHYSn	300 mV ≤ $V_{HYSn(S)}$ ≤ 500 mV	$\begin{array}{c} -V_{\text{HYSn(S)}} \\ \times \ 0.8 \end{array}$	-VHYSn(S)	$-V_{HYSn(S)} \times 1.2$	٧	1
市口 阻反日	VHYSn	0 V≤V _{HYSn(S)} ≤50 mV	$\begin{array}{l} -V_{\text{HYSn(S)}} \\ -0.025 \end{array}$	-V _{HYSn(S)}	-V _{HYSn(S)} + 0.025	V	1
ON / OFF端子 输入电压为 "H"	VsH	V1 = V3 = 22 V	1.5	-	-	V	1
ON / OFF端子 输入电压为 "L"	V _{SL}	V1 = V3 = 22 V	_	-	0.3	V	1
VDD端子 – VSS端子间 的工作电压范围	V_{DD}	_	3.6	-	24	V	_
工作时消耗电流	1	V1 = 22 V, V2 = 3 V, $-V_{DETtotal}^{*3} \ge 42 \text{ V}$	-	4.0	9.0	μΑ	2
工作的相称电弧	I _{DD1}	V1 = 22 V, V2 = 3 V, $-V_{DETtotal}^{*3} < 42 \text{ V}$	-	5.0	11.0	μΑ	2
休眠时消耗电流	I _{DD2}	V1 = 22 V, V2 = 0 V	_	_	0.1	μΑ	2
松山瓜 协由 次 。		完全充电时全输出为ON, V1 = 22 V, V2 = 3 V, V3 = 1 V	10	_	ı	mA	3
输出吸收电流n	lоит _п	完全充电时全输出为OFF, V1 = 10 V, V2 = 3 V, V3 = 1 V	5	_	-	mA	3
输出泄漏电流n	ILEAKn	V1 = 22 V, V2 = 0 V, V3 = 22 V	_	_	0.1	μΑ	3
检测电压的温度系数*4	$\frac{\Delta - V_{DETn}}{\Delta Ta \bullet - V_{DETn}}$	Ta = -40°C ~ +85°C*5	_	±100	±200	ppm/°C	1

***1.** -V_{DETn}: 实际检测电压值、-V_{DETn(S)}: 设定检测电压值

*2. VHYSn:实际滞后幅度、-VHYSn(S):设定滞后幅度

*3. -VDETtotal: 检测电压的合计值

-V_{DETtotal} = -V_{DET1(S)} + -V_{DET2(S)} + -V_{DET3(S)}
*4. 检测电压的温度变化 [mV/°C] 按如下公式计算出来。

$$\frac{\Delta - V_{\text{DETn}}}{\Delta \text{Ta}} \text{ [mV/°C]}^{*1} = -V_{\text{DETn(S)}} \text{ (典型值) [V]}^{*2} \times \frac{\Delta - V_{\text{DETn}}}{\Delta \text{Ta} \bullet - V_{\text{DETn}}} \text{ [ppm/°C]}^{*3} \div 1000$$

- *1. 检测电压的温度变化
- *2. 设定检测电压值
- *3. 上述检测电压的温度系数
- *5. 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

备注 n=1~3

■ 测定电路

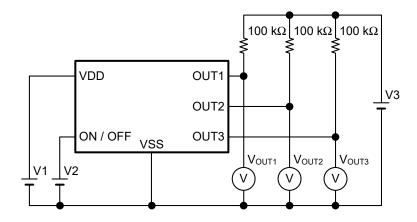


图4 测定电路1

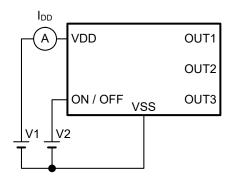


图5 测定电路2

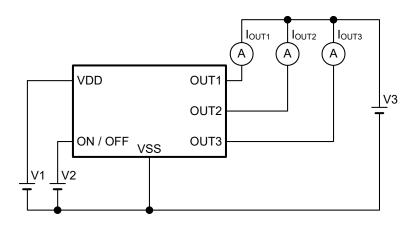


图6 测定电路3

■ 标准电路

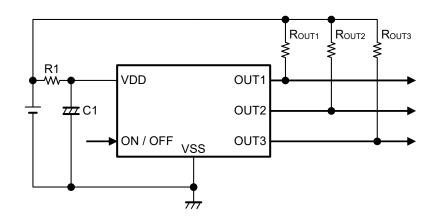


图7

表9 外接元器件的参数

符号	目的	典型值	备注
R1*1	电源电压变动的对策	470 Ω	请尽量将R1设置为较小值, 以此来防止消耗电流对检测 电压精度的恶化。
C1	电源电压变动的对策	0.1 μF	请设置R1 × C1≥40 × 10 ⁻⁶ 。
R _{OUTn} *2	输出端子的上拉	100 kΩ	请不要超过S-8229A系列的容许功耗。

^{*1.} 作为防止振荡的对策,请将R1设置在100 k Ω 以下。

注意 1. 参数有可能不经预告而作更改。

2. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

备注 n=1~3

^{*2.} 为了不要超过容许功耗,请将Rouтn分别设置在620 Ω以上。

■ 工作说明

1. 基本工作

以下说明当Von / OFF ≥ VsH时的基本工作。

1.1 电源电压 (VDD) 上升时

当VDD上升到解除电压 (+VDETn) 以上时, OUTn端子变为解除状态。

表10 解除时的设置状态

输出逻辑	VouTn	N沟道晶体管n
完全充电时全输出为ON	Vss电位	ON
完全充电时全输出为OFF	High-Z	OFF

1.2 VDD降低时

当VDD降低到检测电压 (-VDETn) 以下时, OUTn端子变为检测状态。

表11 检测时的设置状态

输出逻辑	V_{OUTn}	N沟道晶体管n
完全充电时全输出为ON	High-Z	OFF
完全充电时全输出为OFF	Vss电位	ON

1.3 当VDD≤最低工作电压时

OUTn端子的电压不固定。

备注 n=1~3

2. ON/OFF端子

ON / OFF端子用于启动和停止S-8229A系列。

当V_{ON/OFF} ≤V_{SL}时,内部电路停止所有工作,再使N沟道晶体管n (请参照 "■ 框图" 的图1) 变为OFF,就能大幅度地抑制消耗电流。

ON / OFF端子的结构如图8所示。在内部既不被上拉也不被下拉,因此,请不要在浮动状态下使用。如果不使用ON / OFF端子时,请与VDD端子相连接。

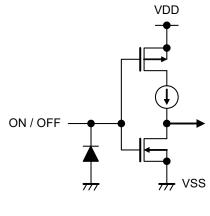
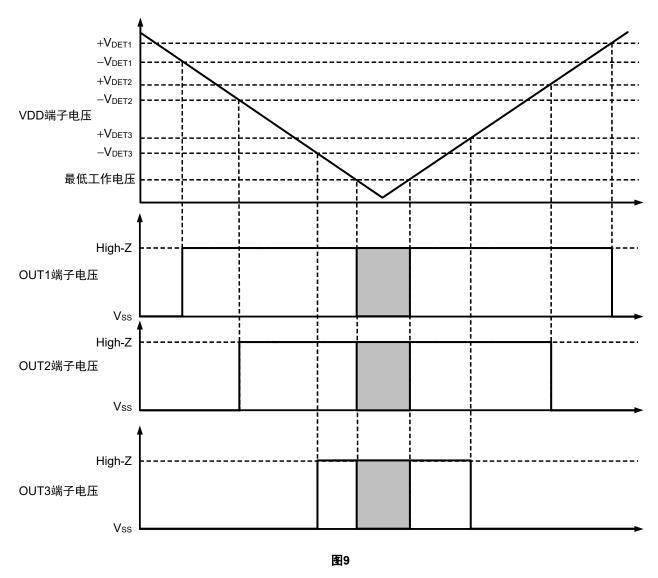
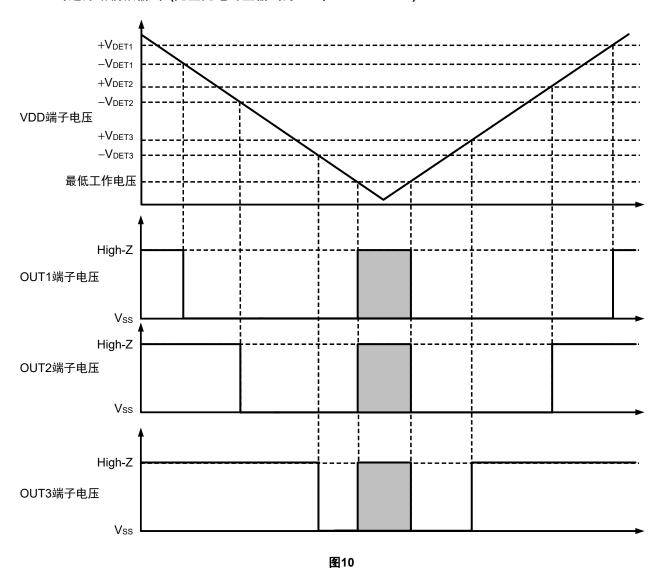



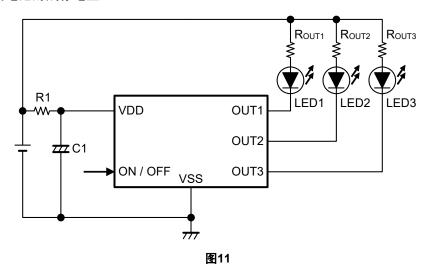
图8

备注 n=1~3


■ 时序图

1. N沟道开路漏极输出 (完全充电时全输出为ON, Von/OFF≥VsH)

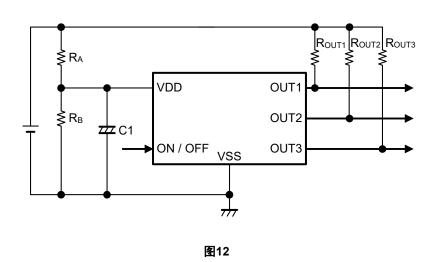
备注 VDD在最低工作电压以下时,阴影范围内的OUT1端子、OUT2端子、OUT3端子的输出电压不固定。


2. N沟道开路漏极输出 (完全充电时全输出为OFF, Von/off≥VsH)

备注 VDD在最低工作电压以下时,阴影范围内的OUT1端子、OUT2端子、OUT3端子的输出电压不固定。

■ 应用电路示例

1. 使用LED检测电池的残存电量

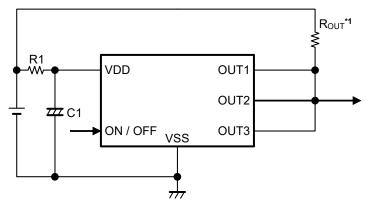

注意 1. 参数有可能不经预告而作更改。

2. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

2. 变更检测电压

如**图12**所示,使用电阻分压器来变更检测电压时,作为防止振荡的对策,请设置 R_A \leq 100 k Ω 。变更后的检测电压按以下公式计算。

检测电压 =
$$\frac{R_A + R_B}{R_B} \times -V_{DETn} + R_A \times I_{DD}$$



- 注意 1. 在上述连接图中,通过 RA和 RB的比例而计算出的检测电压值与实际的检测电压值会有偏差,务请注意。
 - 2. 参数有可能不经预告而作更改。
 - 3. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分 的实测后再设定参数。

备注 n=1~3

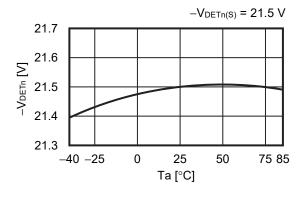
3. 短路输出端子

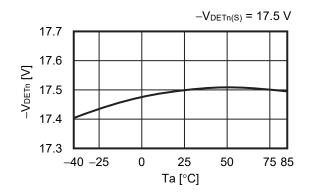
当-V_{DET1(S)} = -V_{DET2(S)} = -V_{DET3(S)}, 且+V_{DET1} = +V_{DET2} = +V_{DET3}时, 如**图13**所示, 通过短路输出端子, 可以增加负载电流。

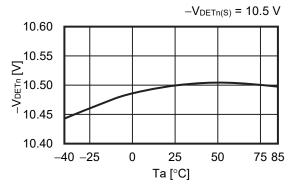
*1. 为了不要超过容许功耗,请将RouT设置在220 Ω以上。 **图13**

注意 1. 参数有可能不经预告而作更改。

2. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

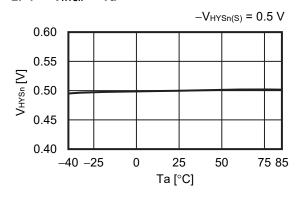

■ 注意事项

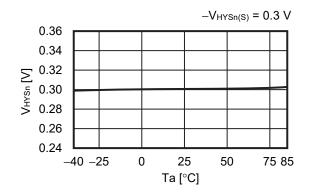

- 请注意输入输出电压、输出端子上拉电阻的使用条件,使IC内的功耗不要超过封装的容许功耗。
- 为降低阻抗, VDD端子、VOUT端子以及VSS端子的布线, 请充分注意接线方式。
- 根据输出吸收电流与VSS端子布线的阻抗成分,检测电压会出现偏差,务请注意。
- 在输入处连接电阻的应用电路中(请参照 "■ 标准电路" 的图7),当输出切换时,由于流经的击穿电流,会发生 "击穿电流 × 输入电阻" 份额的电压下降。
 输出切换后,不流经击穿电流,就不会产生电压下降。接着,再次切换输出后,就会流经击穿电流,产生电压下降。此种状态的反复发生使S-8229A系列有可能产生振荡,务请注意。
- 本资料中所记载的应用电路用于大量生产设计的情况下,请注意部件的偏差与温度特性。另外,有关所记载电路的专利,本公司概不承担相应责任。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格、或因进口国等原因,使包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

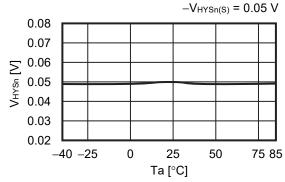

■ 各种特性数据 (典型数据)

1. 检测电压

1. 1 -V_{DETn} - Ta

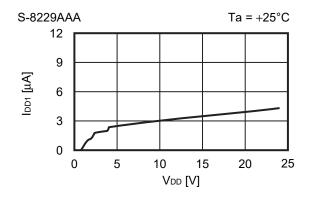


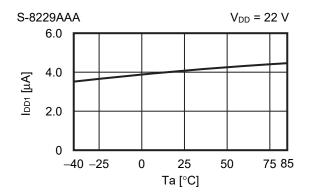




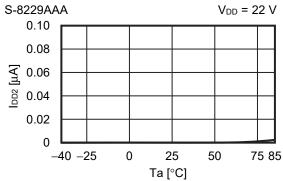
2. 滞后电压幅度

2. 1 -V_{HYSn} - Ta

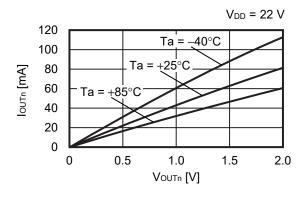



备注 n = 1 ~ 3

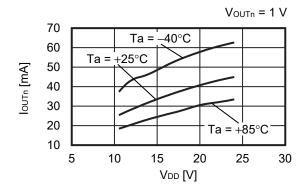
3. 消耗电流


3. 1 $I_{DD1} - V_{DD}$

3. 2 I_{DD1} – Ta

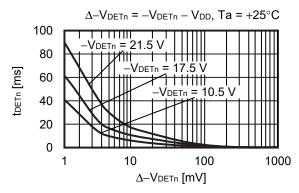


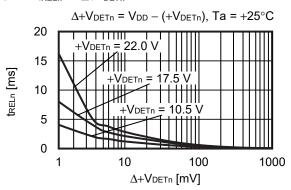
3. 3 I_{DD2} - Ta



4. 输出电流

4. 1 Ioutn - Voutn


4. 2 Ioutn - VDD


备注 n = 1 ~ 3

5. 应答时间

5. 1 t_{DETn} – Δ – V_{DETn}

5. 2 $t_{RELn} - \Delta + V_{DETn}$

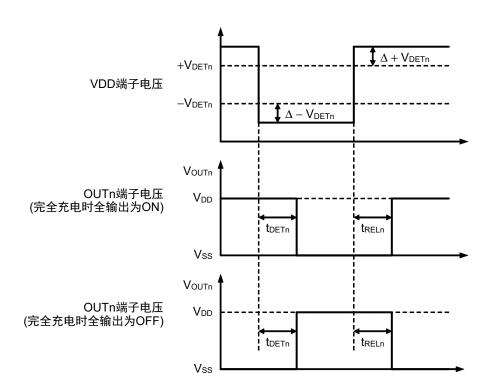
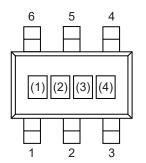


图14 应答时间的测定条件


备注1. 应答时间的测定电路请参照 "图4 测定电路1"。

2. n = 1 ~ 3

■ 标记规格

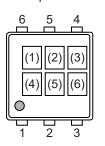
1. SOT-23-6

Top view

(1)~(3): 产品简称 (请参阅产品名与产品简称的对照表)

(4): 批号

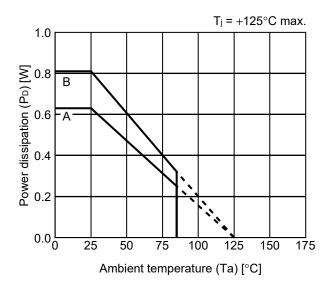
产品名与产品简称的对照表


产品名		产品简称	
7 明有	(1)	(2)	(3)
S-8229AAA-M6T1U	Υ	S	Α
S-8229AAB-M6T1U	Υ	S	В
S-8229AAC-M6T1U	Υ	S	С
S-8229AAG-M6T1U	Υ	S	G
S-8229AAH-M6T1U	Υ	S	Н
S-8229AAI-M6T1U	Υ	S	- 1
S-8229AAJ-M6T1U	Υ	S	J
S-8229AAK-M6T1U	Υ	S	K
S-8229AAL-M6T1U	Υ	S	L
S-8229AAM-M6T1U	Υ	S	М
S-8229AAN-M6T1U	Y	S	N
S-8229AAO-M6T1U	Υ	S	0

2. SNT-6A

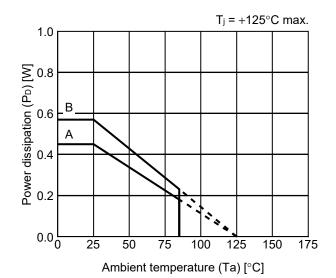
Top view

(4)~(6): 批号



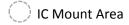
产品名与产品简称的对照表

立旦夕	产品简称		
7 1114	(1)	(2)	(3)
S-8229AAF-I6T1U	Υ	S	F


■ Power Dissipation

SOT-23-6

Board	Power Dissipation (P _D)
Α	0.63 W
В	0.81 W
С	_
D	_
Е	_


SNT-6A

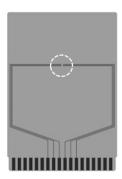
Board	Power Dissipation (P _D)
Α	0.45 W
В	0.57 W
С	_
D	_
E	_

SOT-23-3/3S/5/6 Test Board

(1) Board A

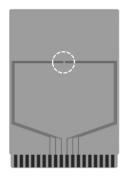
Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		2	
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070	
	2	-	
	3	-	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

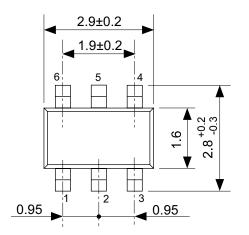
(2) Board B

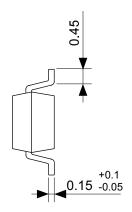

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070
	2	74.2 x 74.2 x t0.035
	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

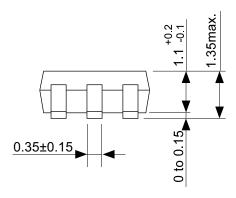
No. SOT23x-A-Board-SD-2.0

SNT-6A Test Board


(1) Board A

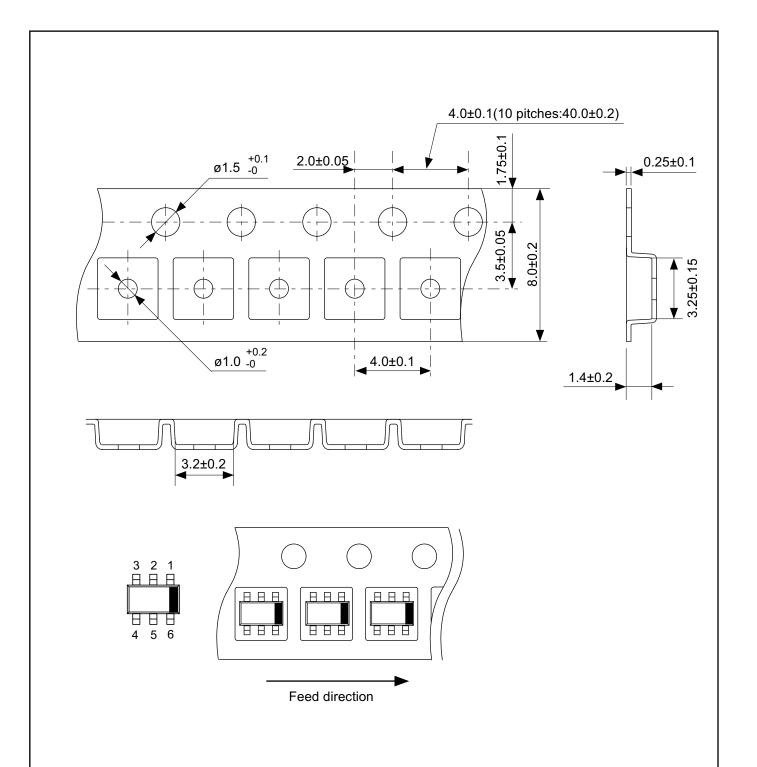

Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		2	
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070	
	2	-	
	3	-	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

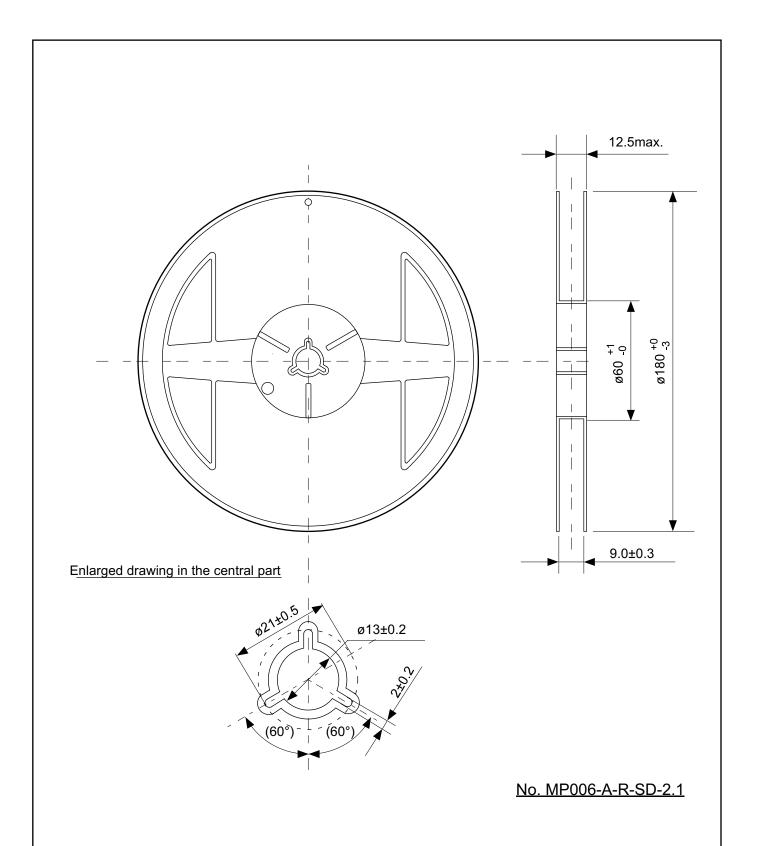

(2) Board B



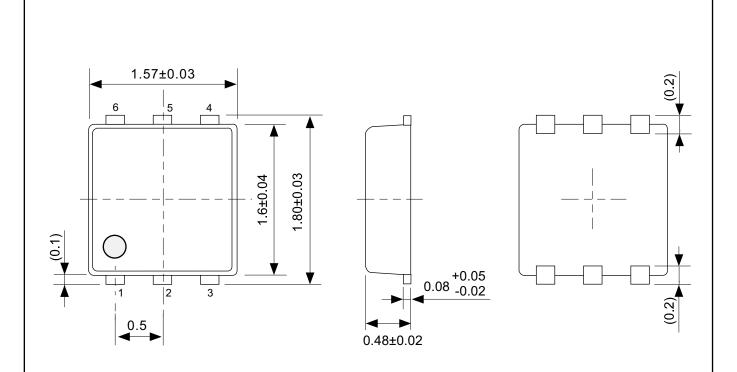
Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070
	2	74.2 x 74.2 x t0.035
	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

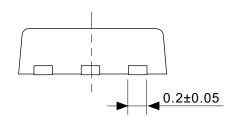
No. SNT6A-A-Board-SD-1.0



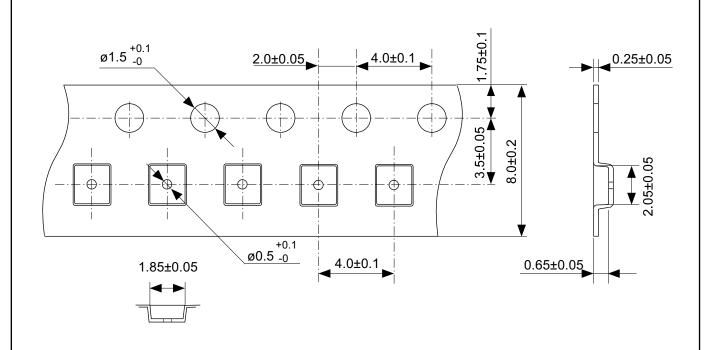

No. MP006-A-P-SD-2.1

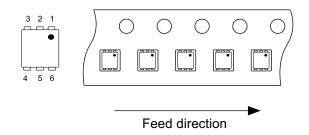
TITLE	SOT236-A-PKG Dimensions
No.	MP006-A-P-SD-2.1
ANGLE	♦ €∃
UNIT	mm
ABLIC Inc.	



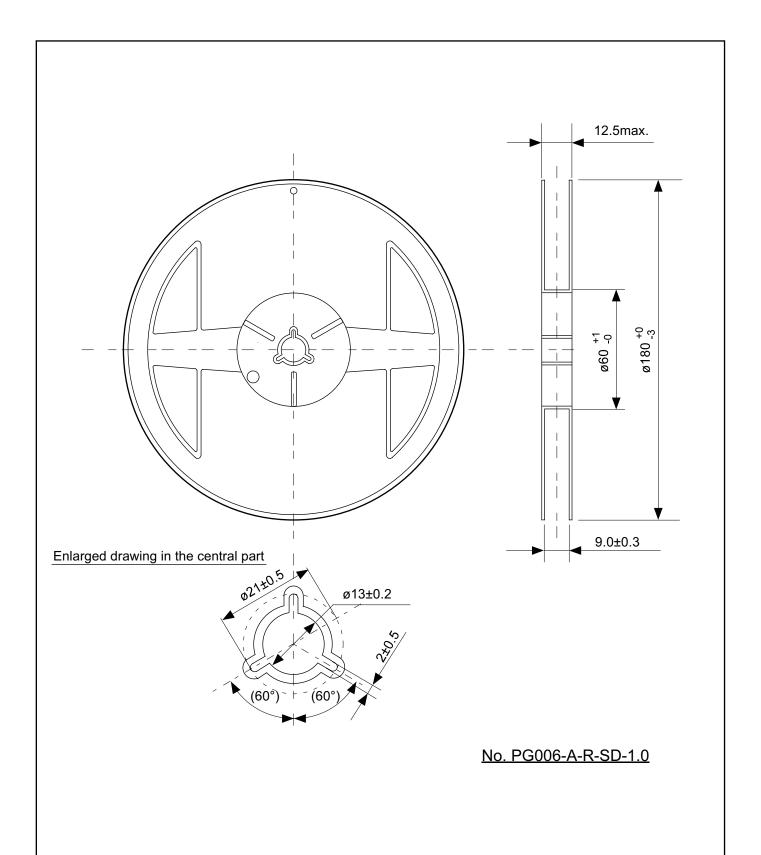

No. MP006-A-C-SD-3.1

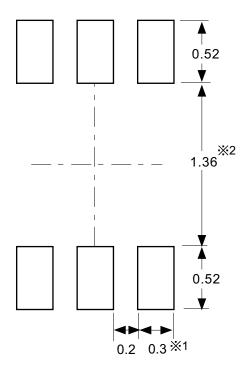
TITLE	SOT236-A-Carrier Tape
No.	MP006-A-C-SD-3.1
ANGLE	
UNIT	mm
ABLIC Inc.	


TITLE	SOT	Г236-А-F	Reel
No.	MPC	06-A-R-SI	D-2.1
ANGLE		QTY	3,000
UNIT	mm		
ABLIC Inc.			



No. PG006-A-P-SD-2.1


TITLE	SNT-6A-A-PKG Dimensions
No.	PG006-A-P-SD-2.1
ANGLE	\bigoplus
UNIT	mm
ABLIC Inc.	



No. PG006-A-C-SD-2.0

TITLE	SNT-6A-A-Carrier Tape
No.	PG006-A-C-SD-2.0
ANGLE	
UNIT	mm
ABLIC Inc.	

TITLE	SNT-6A-A-Reel			
No.	PG006-A-R-SD-1.0			
ANGLE		QTY.	5,000	
UNIT	mm			
ABLIC Inc.				

%1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。 %2. パッケージ中央にランドパターンを広げないでください (1.30 mm ~ 1.40 mm)。

- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
 - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm 以下にしてください。
 - 3. マスク開口サイズと開口位置はランドパターンと合わせてください。
 - 4. 詳細は "SNTパッケージ活用の手引き"を参照してください。
- ※1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
- ※2. Do not widen the land pattern to the center of the package (1.30 mm ~ 1.40 mm).
- Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
 - 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
 - 3. Match the mask aperture size and aperture position with the land pattern.
 - 4. Refer to "SNT Package User's Guide" for details.
- ※1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- ※2. 请勿向封装中间扩展焊盘模式 (1.30 mm ~ 1.40 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
 - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在 0.03 mm 以下。
 - 3. 钢网的开口尺寸和开口位置请与焊盘模式对齐。
 - 4. 详细内容请参阅 "SNT 封装的应用指南"。

No. PG006-A-L-SD-4.1

TITLE	SNT-6A-A -Land Recommendation		
No.	PG006-A-L-SD-4.1		
ANGLE			
UNIT	mm		
ARLIC Inc			

ABLIC Inc.

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可能未经预告而更改。
- 2. 本资料记载的电路示例和使用方法仅供参考,并非保证批量生产的设计。使用本资料的信息后,发生并非因本资料记载的产品(以下称本产品)而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承担任何责任。
- 3. 因本资料记载错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本产品并非是设计用于可能对生命、人体造成影响的设备或装置的部件,也非是设计用于可能对财产造成损害的设备或装置的部件(医疗设备、防灾设备、安全防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。请勿将本产品用于上述设备或装置的部件。本公司事先明确标示的车载用途例外。作为上述设备或装置的部件使用本产品时,或本公司事先明确标示的用途以外使用本产品时,所导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。为了防止因本产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。本资料记载的内容并非是对本公司或第三方的知识产权、 其它权利的实施及使用的承诺或保证。严禁在未经本公司许可的情况下转载、复制或向第三方公开本资料的一部分或全 部。
- 14. 有关本资料的详细内容等如有不明之处,请向代理商咨询。
- 15. 本免责事项以日语版为正本。即使有英语版或中文版的翻译件, 仍以日语版的正本为准。

2.4-2019.07

