

www.ablic.com

车载用、工作温度125°C的CMOS运算放大器

© ABLIC Inc., 2014-2018 Rev.1.1_00

本IC是在小型封装中装配通用模拟电路的IC。它是CMOS型运算放大器。内置相位补偿电路,具有低电压工作、低消耗电流 的特点。

S-19610AB是双运算放大器 (2个电路)。

注意 本产品可使用于车辆器械、车载器械。考虑使用于车辆器械、车载器械时,请务必与本公司的营业部门商谈。

■ 特点

• 输入失调电压低: V_{IO} = +6.0 mV (最大值) (Ta = -40°C ~ +125°C)

 $V_{DD} = 2.70 \text{ V} \sim 5.50 \text{ V}$ • 工作电源电压范围:

• 消耗电流低 (1个电路): I_{DD} = 1.00 mA (典型值)

• 有内部相位补偿: 不需外接器元件

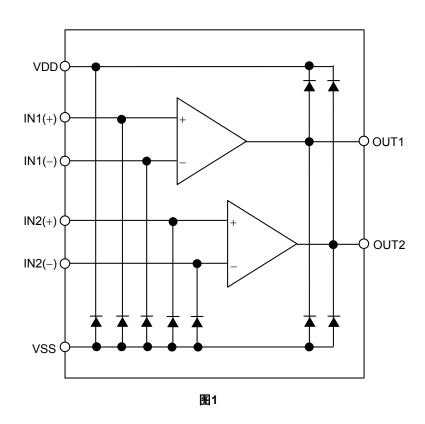
Ta = -40°C ~ +125°C

• 工作温度范围:

• 无铅 (Sn 100%)、无卤素

● 应对AEC-Q100标准*1

*1. 详情请与本公司营业部门联系。

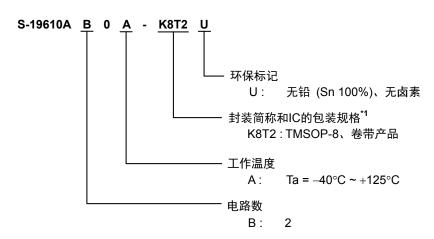

■ 用途

- 电流感测
- 信号放大
- 缓冲器
- 有源滤波器

■ 封装

• TMSOP-8

■ 框图


■ 应对AEC-Q100标准

本IC应对AEC-Q100标准的工作温度等级1。 有关AEC-Q100标准的信赖性测试详情,请与本公司营业部联系。

■ 产品型号的构成

关于产品名的文字含义请参阅"1. 产品名"、关于封装图面请参阅"2. 封装"、关于产品类型请参阅"3. 产品名目录"。

1. 产品名

*1. 请参阅卷带图。

2. 封装

表1 封装图纸号码

封装名	外形尺寸图	卷带图	焊盘图
TMSOP-8	FM008-A-P-SD	FM008-A-C-SD	FM008-A-R-SD

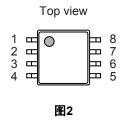

3. 产品名目录

表2

产品名	封装
S-19610AB0A-K8T2U	TMSOP-8

■ 引脚排列图

1. TMSOP-8

表3

引脚号	符号	描述
1	OUT1	输出端子1
2	IN1(-)	倒相输入端子1
3	IN1(+)	非倒相输入端子1
4	VSS	接地 (GND) 端子
5	IN2(+)	非倒相输入端子2
6	IN2(-)	倒相输入端子2
7	OUT2	输出端子2
8	VDD	正电源端子

■ 绝对最大额定值

表4

(除特殊注明以外: Ta = -40°C~+125°C)

项目	符号	绝对最大额定值	单位
电源电压	V_{DD}	$V_{SS} - 0.3 \sim V_{SS} + 7.0$	V
输入电压	$V_{IN(+)}, V_{IN(-)}$	$V_{SS} - 0.3 \sim V_{SS} + 7.0$	V
输出电压	V _{OUT}	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
差动输入电压	V_{IND}	±7.0	V
输出端子电流	I _{SOURCE}	20.0	mA
湘山坳丁屯 洲	I _{SINK}	20.0	mA
工作环境温度		°C	
保存温度	T _{stg}	−55 ~ +150	°C

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化 等物理性的损伤。

■ 热敏电阻值

表5

项目	符号	条件		最小值	典型值	最大值	单位
			Board A	_	160	1	°C/W
			Board B	_	133	1	°C/W
结至环境热阻 ^{*1}	θ_{JA}	TMSOP-8	Board C	-	1	-	°C/W
			Board D	_	-	1	°C/W
			Board E	-	-	-	°C/W

^{*1.} 测定环境 : 遵循JEDEC STANDARD JESD51-2A标准

备注 关于详情,请参阅 "■ Power Dissipation" 和 "Test Board"。

■ 电气特性

1. 推荐工作条件

表6

(除特殊注明以外: Ta = -40°C ~ +125°C)

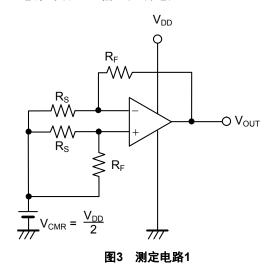
			(_ ,, , , ,			
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
工作电源电压范围	V_{DD}	_	2.70	5.00	5.50	V	-

2. $V_{DD} = 5.0 \text{ V}$

表7

DC电气的特性 (除特殊注明以外:Ta = -40°C ~ +125°C)

			(13) 13 2017	70.0			/
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
消耗电流 (2个电路)	I _{DD}	$V_{CMR} = V_{OUT} = \frac{V_{DD}}{2}$, $Ta = +25^{\circ}C$	-	2.00	2.50	mA	5
输入失调电压	V _{IO}	$V_{CMR} = \frac{V_{DD}}{2}$	-6.0	±3.0	+6.0	mV	1
输入失调电压温漂	ΔV _{IO} ΔTa	$V_{CMR} = \frac{V_{DD}}{2}$	_	±3	_	μV/°C	1
输入偏压电流	I _{BIAS}	Ta = +25°C	_	1	_	pА	_
输入失调电流	I _{IO}	Ta = +25°C	-	1	_	рА	_
输入共模电压范围	V _{CMR}	Ta = +25°C	-0.1	_	3.8	V	2
电压增益 (开环)	A _{VOL}	$V_{OUT} = V_{SS} + 0.5 \text{ V} \sim V_{DD} - 0.5 \text{ V}$ $V_{CMR} = \frac{V_{DD}}{2}, \text{ R}_{L} = 1.0 \text{ M}\Omega,$ $Ta = +25^{\circ}\text{C}$	88	110	-	dB	8
具十龄山振幅由压	V _{OH}	$R_L = 1.0 \text{ M}\Omega$	4.9	_	_	V	3
最大输出振幅电压	V _{OL}	$R_L = 1.0 \text{ M}\Omega$	-	_	0.1	V	4
输入共模信号抑制比	CMRR	$V_{CMR} = V_{SS} - 0.1 \text{ V} \sim V_{DD} - 1.2 \text{ V},$ $Ta = +25^{\circ}C$	70	85	-	dB	2
电源电压抑制比	PSRR	2.70 V≤V _{DD} ≤5.50 V, Ta = +25°C	70	90	_	dB	1
源电流	I _{SOURCE}	$V_{OUT} = V_{DD} - 0.12 \text{ V},$ $Ta = +25^{\circ}\text{C}$	5.0	_	_	mA	6
吸收电流	I _{SINK}	V _{OUT} = 0.12 V, Ta = +25°C	5.0	_	_	mA	7


表8

AC电气的特性 (除特殊注明以外:Ta = −40°C ~ +125°C)

项目	符号	条件	最小值	典型值	最大值	单位
压摆率	SR	R _L = 1.0 MΩ, C _L = 15 pF (参阅 图11)	-	2.00	_	V/μs
增益带宽乘积	GBP	C _L = 0 pF	-	3.00	_	MHz

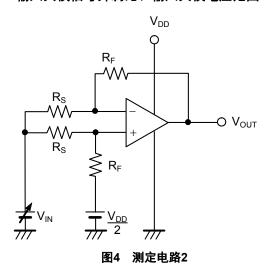
■ 测定电路 (1个电路)

1. 电源抑制比、输入失调电压

• 电源抑制比 (PSRR)

在不同的 V_{DD} 值条件下测定出 V_{OUT} ,然后按照以下的公式计算出电源抑制比 (PSRR)。

测定条件:


$$V_{DD}$$
 = 2.70 V : V_{DD} = V_{DD1} , V_{OUT} = V_{OUT1}
 V_{DD} = 5.50 V : V_{DD} = V_{DD2} , V_{OUT} = V_{OUT2}

$$PSRR = 20 log \left(\left| \frac{V_{DD1} - V_{DD2}}{\left(V_{OUT1} - \frac{V_{DD1}}{2}\right) - \left(V_{OUT2} - \frac{V_{DD2}}{2}\right)} \right| \times \frac{R_F + R_S}{R_S} \right)$$

● 输入失调电压 (V_{IO})

$$V_{IO} = \left(V_{OUT} - \frac{V_{DD}}{2}\right) \times \frac{R_S}{R_F + R_S}$$

2. 输入共模信号抑制比、输入共模电压范围

● 输入共模信号抑制比 (CMRR)

在不同的 V_{IN} 值条件下测定出 V_{OUT} ,然后按照以下的公式计算出输入共模信号抑制比 (CMRR)。

测定条件:

$$V_{IN} = V_{CMR\ Max.}: V_{IN} = V_{IN1}, V_{OUT} = V_{OUT1}$$

 $V_{IN} = V_{CMR\ Min.}: V_{IN} = V_{IN2}, V_{OUT} = V_{OUT2}$

$$\text{CMRR} = 20 \text{ log } \left(\left| \frac{V_{\text{IN1}} - V_{\text{IN2}}}{V_{\text{OUT1}} - V_{\text{OUT2}}} \right| \times \frac{R_{\text{F}} + R_{\text{S}}}{R_{\text{S}}} \right)$$

● 输入共模电压范围 (V_{CMR})

使 V_{IN} 发生变化, V_{OUT} 符合输入共模信号抑制比的规格下的输入电压范围。

3. 最大输出振幅电压

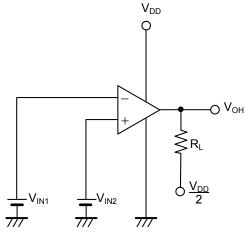


图5 测定电路3

最大輸出振幅电压 (Vон)

测定条件:

$$V_{IN1} = \frac{V_{DD}}{2} - 0.1 \text{ V}$$

$$V_{IN2} = \frac{V_{DD}}{2} + 0.1 \text{ V}$$

$$R_L = 1 \text{ M}\Omega$$

$$R_1 = 1 M\Omega$$

4. 最大输出振幅电压

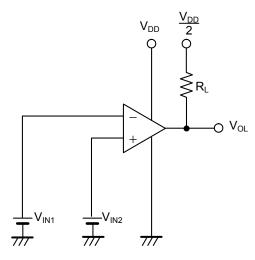


图6 测定电路4

・最大输出振幅电压 (VoL)

测定条件:
$$V_{IN1} = \frac{V_{DD}}{2} + 0.1 \text{ V}$$
$$V_{IN2} = \frac{V_{DD}}{2} - 0.1 \text{ V}$$
$$R_L = 1 \text{ M}\Omega$$

$$V_{IN2} = \frac{V_{DD}}{2} - 0.1$$

$$R_L = 1 M\Omega$$

5. 消耗电流

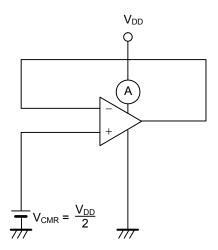
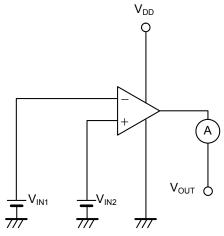
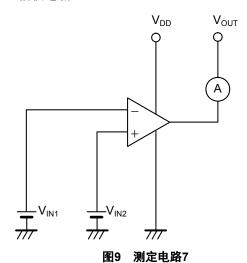


图7 测定电路5

● 消耗电流 (I_{DD})

6. 源电流




图8 测定电路6

● 源电流 (I_{SOURCE})

测定条件:

$$V_{OUT} = V_{DD} - 0.12 \text{ V}$$
 $V_{IN1} = \frac{V_{DD}}{2} - 0.1 \text{ V}$
 $V_{IN2} = \frac{V_{DD}}{2} + 0.1 \text{ V}$

7. 吸收电流

● 吸收电流 (I_{SINK})

测定条件:

$$V_{OUT} = V_{SS} + 0.12 \text{ V}$$

$$V_{IN1} = \frac{V_{DD}}{2} + 0.1 \text{ V}$$

$$V_{IN2} = \frac{V_{DD}}{2} - 0.1 \text{ V}$$

8. 电压增益

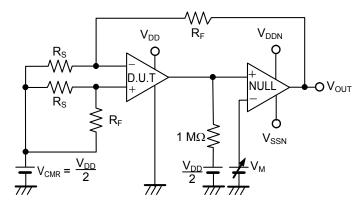
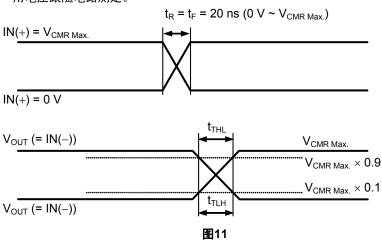


图10 测定电路8

● 电压增益 (开环) (A_{VOL})

在不同的 V_M 条件下测定 V_{OUT} ,然后按照以下的公式 计算电压增益 (A_{VOL}) 。

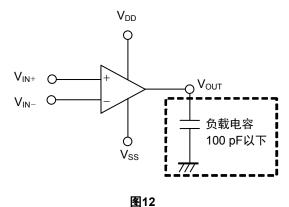

测定条件:

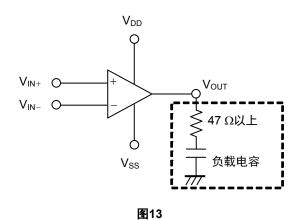
$$\begin{split} V_M &= V_{DD} - 0.5 \; V: V_M = V_{M1}, \, V_{OUT} = V_{OUT1} \\ V_M &= 0.5 \; V: V_M = V_{M2}, \, V_{OUT} = V_{OUT2} \end{split}$$

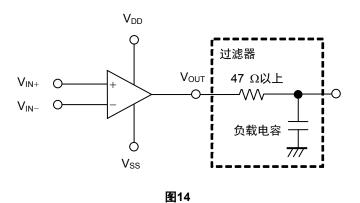
$$A_{VOL} = 20 \log \left(\left| \frac{V_{M1} - V_{M2}}{V_{OUT1} - V_{OUT2}} \right| \times \frac{R_F + R_S}{R_S} \right)$$

9. 压摆率 (SR)

用电压跟随电路测定。



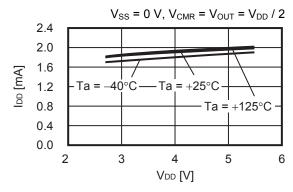

● 压摆率 (SR)

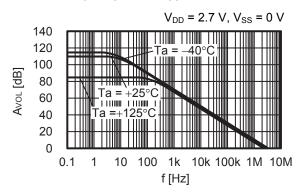

$$SR = \frac{V_{CMR\;Max.} \times 0.8}{t_{TLH}}$$

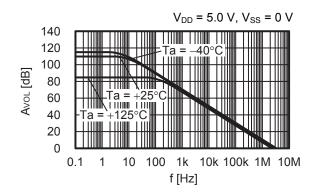
$$SR = \frac{V_{CMR\;Max.} \times 0.8}{t_{THL}}$$

■ 注意事项

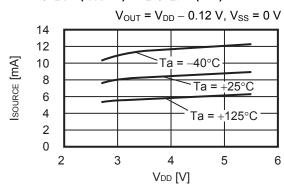
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因,使包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。
- 请在输出电流为20 mA以下的条件下使用。
- 如图12所示,即使在本IC的输出端子上直接连接100 pF以下的负载电容,依然可以稳定工作。连接了大于100 pF的较大负载电容时,如图13所示,请连接47 Ω以上的电阻。另外,为防止噪音要连接过滤器时,如果连接了大于100 pF的负载电容时,则如图14所示,需要连接47 Ω以上的电阻。

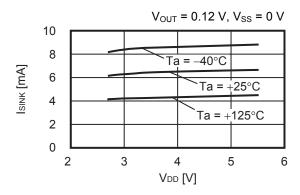



注意 上述连接图以及参数仅供参考,并不作为保证电路工作的依据。请在进行充分的实测基础上,再设定实际的应用 电路的参数。

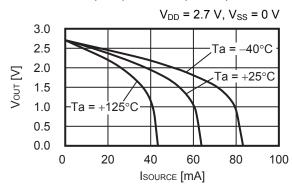

■ 各种特性数据 (典型数据)

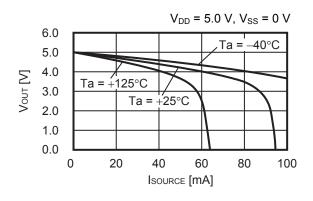
1. 消耗电流 (I_{DD}) (2个电路) – 电源电压 (V_{DD})


2. 电压增益 (A_{VOL}) – 频率 (f)

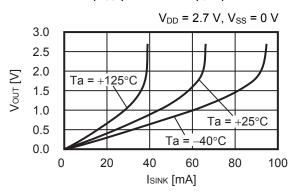


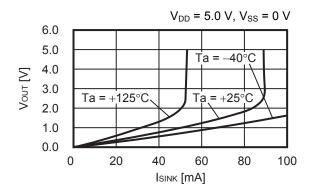
3. 输出电流特性

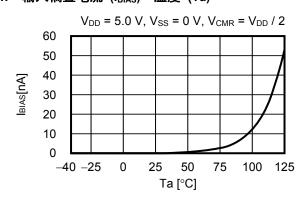

3.1 源电流 (I_{SOURCE}) - 电源电压 (V_{DD})



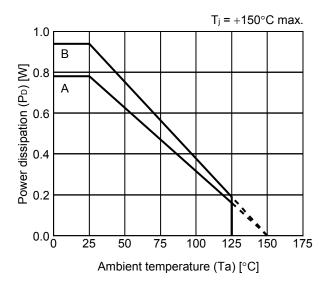
3.2 吸收电流 (I_{SINK}) - 电源电压 (V_{DD})




3.3 输出电压 (Vout) - 源电流 (Isource)



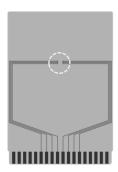
3.4 输出电压 (V_{OUT}) - 吸收电流 (I_{SINK})



4. 输入偏置电流 (I_{BIAS}) - 温度 (Ta)

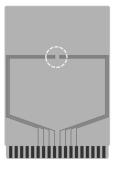
■ Power Dissipation

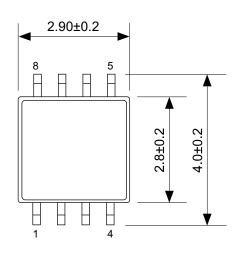
TMSOP-8

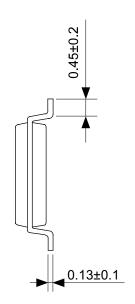


Board	Power Dissipation (P _D)
Α	0.78 W
В	0.94 W
С	_
D	_
Е	_

TMSOP-8 Test Board


(1) Board A

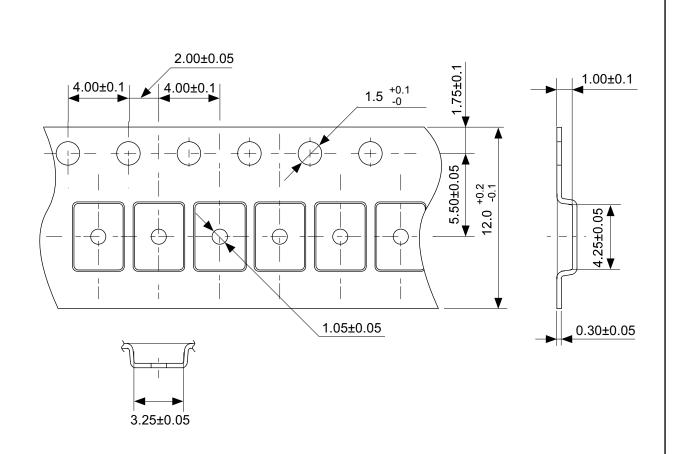

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		2
	1	Land pattern and wiring for testing: t0.070
Copper foil layer [mm]	2	-
Copper foil layer [min]	3	-
	4	74.2 x 74.2 x t0.070
Thermal via		-

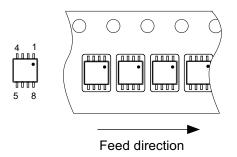

(2) Board B



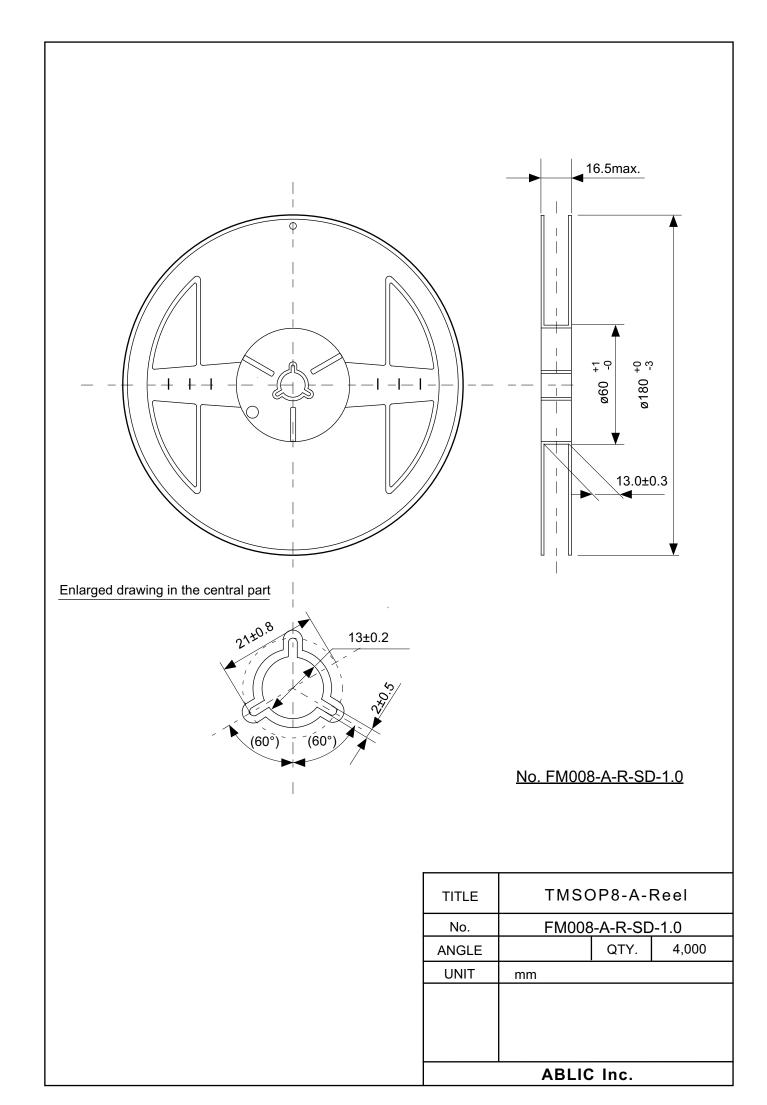
Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
	1	Land pattern and wiring for testing: t0.070
Connor foil lover [mm]	2	74.2 x 74.2 x t0.035
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

No. TMSOP8-A-Board-SD-1.0





No. FM008-A-P-SD-1.2


TITLE	TMSOP8-A-PKG Dimensions		
No.	FM008-A-P-SD-1.2		
ANGLE	Q		
UNIT	mm		
ABLIC Inc.			

No. FM008-A-C-SD-2.0

TITLE	TMSOP8-A-Carrier Tape
No.	FM008-A-C-SD-2.0
ANGLE	
UNIT	mm
ABLIC Inc.	

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可能未经预告而更改。
- 2. 本资料记载的电路示例和使用方法仅供参考,并非保证批量生产的设计。使用本资料的信息后,发生并非因本资料记载的产品(以下称本产品)而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承担任何责任。
- 3. 因本资料记载错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本产品并非是设计用于可能对生命、人体造成影响的设备或装置的部件,也非是设计用于可能对财产造成损害的设备或装置的部件(医疗设备、防灾设备、安全防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。请勿将本产品用于上述设备或装置的部件。本公司事先明确标示的车载用途例外。作为上述设备或装置的部件使用本产品时,或本公司事先明确标示的用途以外使用本产品时,所导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。为了防止因本产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。本资料记载的内容并非是对本公司或第三方的知识产权、 其它权利的实施及使用的承诺或保证。严禁在未经本公司许可的情况下转载、复制或向第三方公开本资料的一部分或全 部。
- 14. 有关本资料的详细内容等如有不明之处,请向代理商咨询。
- 15. 本免责事项以日语版为正本。即使有英语版或中文版的翻译件, 仍以日语版的正本为准。

2.4-2019.07

